加法的集合関数


定義
空間 加法族
集合 に対し有限実数値関数が、


単調増加
単調減少
が単調増加または単調減少


の上変動:

の下変動:

の全変動:


Jordan分解


Hahnの分解定理
空間でのにおいて、

を満たすが存在する。

が絶対連続

が特異



が絶対連続であるための必要十分条件は

が特異であるための必要十分条件は


が成り立つ

Randon-Nikodymの定理
  1. 絶対連続な集合関数、特異な集合関数が存在し、
  2. 上記は一意的に定まる
  3. に対し

    可積分関数

[0]Top



こだわりハウス
ピンポイントストリートビュー
おもしろ画像のピンポイントストリートビュー