

Properties of the Laurent expansion

Keichi SUZUKI

Yamagata Prefecture, Japan

szk_kei@yahoo.co.jp

Theorem 1: Condition where term degrees skip by n in a Laurent expansion

Let $w = f(z)$ be a function on the complex plane, and assume it is regular on the domain

$D : 0 \leq R_1 < |z - \alpha| < R_2 \leq \infty$. Assume that $w = f(z)$ is Laurent expandable, and let

$f(z) = \sum_{\nu=-\infty}^{\infty} c_{\nu} (z - \alpha)^{\nu}$. If n is a natural number equal to or greater than 2, a necessary and sufficient

condition for term degrees to skip by n , i.e., $f(z) = \sum_{\nu=-\infty}^{\infty} c_{n\nu} (z - \alpha)^{n\nu}$, is that when we convert to polar

form by using $z = \alpha + re^{i\theta}$ ($0 \leq \theta \leq 2\pi$) and set $f(z) = F(r, \theta)$, then $F(r, \theta)$ becomes identically $F(r, \theta) = F(r, \theta + 2\pi/n)$.

Theorem 2: Number of points causing periodicity in the function

Let $w = f(z)$ be an entire function defined on the complex plane. Convert $f(z)$ to polar form by using $z = \alpha + re^{i\theta}$ at point α , and let $f(z) = F_{\alpha}(r, \theta)$. Let n be a natural number greater than or equal to 2. Then in the complex plane, one of the following holds regarding the number of α where $F_{\alpha}(r, \theta)$ identically satisfies $F_{\alpha}(r, \theta) = F_{\alpha}(r, \theta + 2\pi/n)$:

- ① None exist
- ② Only 1 exists
- ③ An infinite (countable) number exist at equal intervals on a straight line, and at each point $F_{\alpha}(r, \theta) = F_{\alpha}(r, \theta + \pi)$

holds.

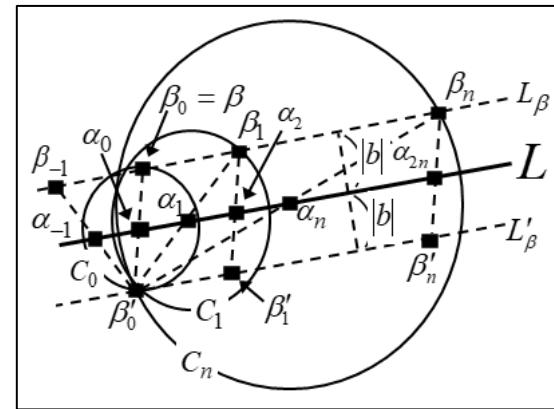
Theorem 3: If there are an infinite number of points causing periodicity

Let $w = f(z)$ be an entire function defined on the complex plane. Convert $f(z)$ to polar form by using $z = \alpha + re^{i\theta}$ at point α , and let $f(z) = F_{\alpha}(r, \theta)$. Assume there are an infinite (countable) number of points α such that $F_{\alpha}(r, \theta) = F_{\alpha}(r, \theta + \pi)$ at equal intervals on the straight line L . Designate this sequence of points as $\{\alpha_n\} (-\infty \leq n \leq \infty)$.

3.1 Periodicity of function

Let $w_{\beta} = f(\beta)$ at an arbitrary point β on the complex plane. Rearrange the order of the numbers n in $\{\alpha_n\}$ and let the point nearest to β in the point sequence $\{\alpha_n\}$ be α_0 . For points z other than point β satisfying $w_{\beta} = f(z)$, $w_{\beta} = f(\beta_n)$ in the point sequence $\{\beta_n\}$ ($\beta_0 = \beta$) with twice the interval of the interval in the point sequence $\{\alpha_n\}$, on the straight line L_{β} which passes through point β parallel to line L .

Also, set $\beta_n = \alpha_{2n} + re^{i\theta}$. Using $\beta'_n = \alpha_{2n} + re^{i(\theta+\pi)}$, it is possible to create the point sequence $\{\beta'_n\}$, and these points satisfy $w_{\beta} = f(\beta'_n)$.



The point sequence $\{\beta'_n\}$ is located on the straight line L'_β on the opposite side, with an equal distance between the line L and the line L'_β , and an infinite (countable) number of points exist at the same interval as the interval for $\{\beta_n\}$.

The point β is an arbitrary point, so if we set $\alpha_1 - \alpha_0 = a$, then $f(z) = f(z + 2a)$ holds identically.

3.2 Periodicity of domain

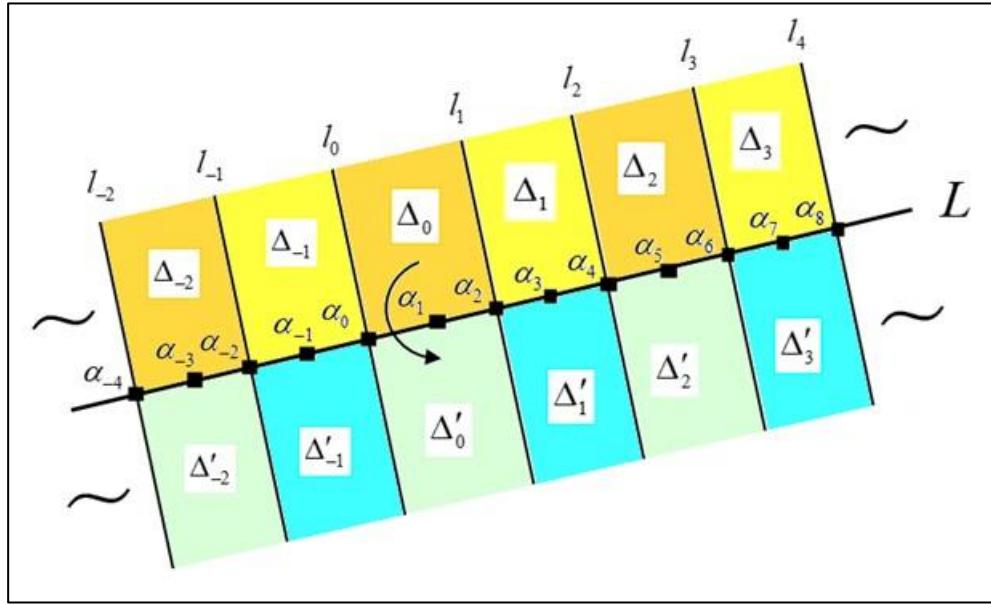
Let $\dots, l_{-1}, l_0, l_1, l_2 \dots$ be lines perpendicular to L , passing through the point sequence on L , $\dots, \alpha_{-2}, \alpha_0, \alpha_2, \alpha_4, \dots$. Let Δ_0 be the domain on one side of L surrounded by l_0, l_1 . A sequence of domains $\{\Delta_n\} (-\infty \leq n \leq \infty)$ is defined using the same method. Let Δ'_0 be the domain on the other side of L surrounded by l_0, l_1 . A sequence of domains $\{\Delta'_n\} (-\infty \leq n \leq \infty)$ is defined using the same method.

Due to “3.1 Periodicity of function”, the following hold:

$$\dots = f(\Delta_{-2}) = f(\Delta_{-1}) = f(\Delta_0) = f(\Delta_1) = f(\Delta_2) = \dots$$

$$\dots = f(\Delta'_{-2}) = f(\Delta'_{-1}) = f(\Delta'_0) = f(\Delta'_1) = f(\Delta'_2) = \dots$$

The domain obtained by rotating Δ_0 by 180° about α_1 is Δ'_0 . Because $F_{\alpha_1}(r, \theta) = F_{\alpha_1}(r, \theta + \pi)$, $f(\Delta_0) = f(\Delta'_0)$ holds. Similarly, $f(\Delta_n) = f(\Delta'_n), (-\infty \leq n \leq \infty)$ holds.



3.3 An alternative interpretation of periodicity

In 3.1 and 3.2, periodicity was expressed using even numbers, e.g., α_{-2} and α_0 , α_0 and α_2 , α_2 and α_4 , but periodicity can also be expressed with odd numbers, e.g., α_{-1} and α_1 , α_1 and α_3 , α_3 and α_5 .

Prediction: Regarding the non-trivial zero points of the ζ function

$\zeta(s)(s-1)$ becomes a regular function over the entire complex plane. Assume that we have further converted the function, and made it into a function that satisfies $F_\alpha(r, \theta) = F_\alpha(r, \theta + \pi)$. If a single point can be found corresponding to a non-trivial zero point in Δ_0 or on L , then an infinite number of similar points exist due to periodicity, and thus this should yield a proof of the Riemann hypothesis.

The n th zero point is evident from $F_\alpha(r, \theta) = F_\alpha(r, \theta + \pi)$, so if an inverse conversion is done, the n th non-trivial zero point of $\zeta(s)$ will likely be evident.