
Addition, subtraction, multiplication, and division of algebraic equations 

I hit upon the following method of calculation during my sophomore year of college when I was 

working on the representation of algebraic equations. When I taught this method to first-year 

students at a senior high school where I was working as a trainee teacher during my senior year of 

college, they were impressed, and today, this method appears to be widely used. 

Let us carry out the following calculations by using this method. 

(X – 3)(2X + 1)(X2 + 3X + 1) = ? 

(X6 + 4X5 – X4 – 5X3 + 2X2 – 3X – 2)/(X2 + 2X – 2) = ? 

Solution 

 



Therefore, 

(X – 3)(2X + 1)(X2 + 3X + 1) = 2X4 + X3 – 16X2 + 4X – 3 

(X6 + 4X5 – X4 – 5X3 + 2X2 – 3X – 2)/(X2 + 2X – 2) = X4 + 2X3 – 3X2 + 5X – 14, and the remainder 

is (35X – 30) 

This method can be interpreted as one that involves carry-free addition, subtraction, multiplication, 

and division. 

Let’s consider the recurring decimal. For example, for calculating 3/11, we have: 

, 

which results in 3/11 = 0.27272727… 

We can use the above to calculate algebraic equations. For example, if we calculate , 
we obtain: 

, 
and then 

 
This result coincides with the Laurent expansion taught in undergraduate courses. 

Here, even though we are not looking for the convergence of , it converges for . 

Further investigation may result in new applications. 



The division method is changed and executed leftwards. 
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It matches the results of the Taylor expansion taught at high school. 

Here, we are not looking for the region of convergence of x , but note that it converges for 
1<x

. 

The two calculations above resemble a expansion expansion that uses only addition, subtraction, 

multiplication and division, without the derivative of the Taylor expansion and the complex integral 

of the Laurent expansion. 



Let us try to generalize it. Consider the simple rational function: 

)(
)()(

01
1

1

01
1

1

xB
xA

bxbxbxb
axaxaxaxf n

n
n

n

m
m

m
m =

++⋅⋅++
++⋅⋅++

= −
−

−
−  

Here, the numerator and denominator are predefined, with 0≠nb  and 00 ≠b . 

The calculations so far considered 0=x , and generalization implies finding the expansion centered 

on α=x . This generalization is transformed into a division between the terms 

( )( )0101 ,,,,,, bbbaaa mmnn ′⋅⋅′′⋅⋅′ −− , and in this case it is sufficient to consider 0=x . 
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For nm > , it is possible to perform the following transformation: 
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To verify the possibility of performing series expansion, it is sufficient to consider just the series 

expansion of 
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The proof for nm =  is sufficient. 

 

For nm < , the equation can be reconstructed considering 0,,, 11 =⋅⋅ +− mnn aaa , and the proof for 

the case of nm =  is sufficient. 
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As a result of this calculation, we obtain: 
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As a result of this calculation, we obtain: 
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Continuing this calculation yields, for 1>k : 
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generalizing x  to complex numbers and considering that no x  exists satisfying 0)( ≠xB , we 

have: 
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Consider the n  solutions that satisfy 0)( =xB  as nβββ ,,, 21 ⋅⋅ , and 
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If rx < , 
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xB
xA  is differentiable and can be expanded in a Taylor expansion, and an ( )r<ξξ  

exists satisfying 
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Here, we attempt to prove that ① is equivalent to ② by mathematical induction: 
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Therefore, ① is equivalent to ② for 1,0=i . 

Suppose that ① is equivalent to ② for ik = . 
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Therefore, we have: 
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This equation is equivalent to a division between algebraic equations. In other words, for 1+= ik , 

① is equivalent to ②. 



 Next, the calculation below is carried out rightwards. 
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Considering 1>k , we have: 
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If Rx > , since 0)( ≠xB , we have: 
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 is a regular function that can be expanded into a Laurent expansion. In 

addition, ③ must coincide with the Laurent expansion. 
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 is differentiable and can be expanded into a Taylor expansion. The 
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 leftwards.  

Reverting using 
X

x 1
=  should coincide with the Laurent expansion. 
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to the leftward direction. 
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Reverting 
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= , it becomes 
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which coincides with the Laurent expansion. 


