2.1 Property of Laurent expansion
Theorem
Suppose W= f(2) is a function in complex plane and regular for the region

DO R1|Z—0L| R, oo;

o0
and w= f(2) is expansive by Laurent expansion and f(2z)= ZCV (z—a) .

VvV =—00

Here, set z=a +re®(0 © 2r1) andwrite f(2)=g(r,0) in polar form: then

g(r,0)=9(r,6 +2t/n) constantly for g(r,0) < f(2)= icnV (z—a)W

V=—00

where N is a natural number.

(proof)
(<)
f(2)= > cny(z—a)™
vV =—00
o0 .
_ zcnvrnvelnve
V=—00
now, for “v

i 2
em O+2) =cos(nvO + 2rv) +isin(nvO + 2rv)
=cos(nvO ) +isin(nvo)

—¢ nvo

-.g(r,0)=9(r,6 +21/n)
=)

set F(2=g(r,0)= Y re"? then

V==

g(r,0 +2n/n) = icvrveiv(mzn/n) .

V=—00



From g(r,0)=g(r,0 +2r/n) we can establish the expression for v :

veive iv(6+2n/n)

o —c,r'e

r #0 allows to be valid ¢, e'vo =C, elv(9+2n/n) .

Assume ¢, #0,

dve _ v +21/n)

_ VO g2tiv/n

e2n|v/n -1
Unless v is a multiple of n, the equation above becomes contradictory, thus leading
to ¢, =0.

Now, suppose Vv is an integer, we can establish the expression:

f(2)= icm (z—a)W .

V=—00

(end of proof)

The following result is clear, but once more | would like to set out for you reference:
1. Suppose W= f(2z) is a function in complex plane: then the necessary condition

where it is expansive using Laurent expansionfor D 0 R |Z—oc| R, o is

g(r,0)=9(r,06 +2r) constantly for g(r,0).
2. Suppose W= f(z) is a function in complex plane and expansive by Laurent
expansion at neighbourhood of the point o .

If g(r,0)=g(r,0 +2r/n) constantly for g(r,0) where n is a natural number more
than 1, then

v -th derived function f(v)(oc) =0 where v (v > 0)is not a multiple of n.

From 2, f™(a) now “may be known from the periodicity in terms of its polar-form



function with center at o ” instead of formerly “can be known upon substituting o
into it after differentiating it n times.”



2.2 Periodicity of funtion
Suppose W= f (2) is a entire function defined in complex plane.

f(2) is transformed to its polar form f(z)=g,(r,0) using z=o + re® ata any
point o .

Set n as a natural number not less than 2, then the number of o for g, (r,0) such

that constantly satisfies g, (r,0) =g, (r,0 +2t/n) in complex plane is

1. null;
2. onlyone; or
3. infinite (countable) at regular intervals on a line,

each point satisfying the equation g, (r,0)=g,(r,6 +n).

(proof)
1.Suppose a and b are real-number constants and W= az+Db, they clearly satisfies 1.

2.Suppose N is a natural number more than 1 and w= z", they clearly satisfies 2..
3.Let us consider on a condition: W=c0sz; o =nn (n=--—-2-1,012,).

cos(nm + 2) = %[ei (nm+2)  o-i(nm +Z))

:%( inm eiz +e—inn e—iz)

%(eiz + e‘iz): cosz (n: an even number
%(—eiz—e‘iz):—cosz n: an odd number

Therefore, the periodicity of W= C0Szis to be determined the region: 0 R(z2) = .

For a =0,

go(r 0 _HI):%(eir(cos(6+n)+isin(9+n))+e—ir(cos(9+n)+isin(6+n)))

2
= go(r.6)

B 1(e—ir(cose+isine) +eir(cose+isine))

Therefore, g, (r,0) has periodicity at a=0.

For n as an even number,



g (r6+n)— ei(nn+r(cos(e+n)+isin(e+n)))+e—ii<”“”(°°S<9*“)”9”(9*“”))j
nn ' -

D

(" —r (cos0+iSind)) i (N7 (cos) +isin6)) )

e—lr(cose+|sm6) +e|l’(COS€+IS|n9))

—

—inn—ir(cose+isin9)+einn+ir(cose+isin9))

(4]
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= gnn (r!e)

For n as an odd number,

g (1,0 _H_E):%(ei(nn+r(cos(6+n)+isin(9+rc)))+e—ii(””+r(°05(9+“)+i5i”(9+“))))j

_= ei(nn—r(cose +ising)) i e—i(nn—r(cose +isjne)))

[EEN

e—lr(cose+|sm9) +e|r(cose+|sm6))

—inn—ir(cose+isine)+einn+ir(cose+isin9))

D
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=0One (r’e)
Therefore, g,(r,0)=g9,(r,0 +m) is valid at a point o =nm on a line (real-number

axis). Thus, there is a function satisfying 3.
In this case, it is unknown whether or not on real-number axis is the point
B(0< B <m), itis also unknown whether or not any point on any other axis than

real-number one has periodicity, which will be illustrated later in the property

of general entire function.

Let us consider using general entire function.
First, suppose there are 2 points having periodicity;

Assume ¢, (r,0)=g,(r,6 +2t/m) at z=a;and

9, (r0)=9g,(r,0+2n/n) at z=.



Put m>2 n>2.

Suppose there is a point 3 onacircle C, with center at o .

Assume another circle CB with center at B having a any radius.
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Suppose a point [31 is generated by revolving a point 3 counterclockwise by 2rt/m,
from g, (r,0)=g,(r,0 +2t/m) we can establish
f(B)=1(By)-

Likewise, suppose a point B, is
generated by revolving a point '

counterclockwise by 2t/m,

from g, (r,0)=g,(r.6 +2t/m)
we can establish

F(B)=(B)).




Therefore, the property allowing to be valid at z=J3

g[} (r’e) = gB (r1e +2ﬂ:/n)
can also be applied to B, giving

gﬁl(r!e) = gBl(r’e + 275/”)

The number of periodic points is 3.

For the foregoing, we began with o ; Now, beginning with [, to generate o, from
a leads to
gal(r'e) = g(xl(r’e +27E/m) .

Therefore, the number of periodic points is 4.

Repeating this will cause a lattice point having periodicity to be infinite (countable).

Suppose either m or n is not less than 3 and the other is 2.
This condition, like that of m>2 n>2, will also cause a lattice point having
periodicity to be infinite (countable).

Suppose periodic points is infinite (countable) in the whole complex plane like a lattice,

w= f(2) has afinite value at |7 =oo0.



From Liouville’s Theorem, w= f(z) must be a constant.

Therefore, it is contradictory that it has periodicity at infinite (countable) point in the
whole complex plane.

Naturally, it is also contradictory that it has periodicity in continuous potency in the
whole complex plane.

Put m=n=2.

Suppose there is a point 3 onacircle C, with center at o .

Cor

Assume another circle CB with center at 3 having a any radius.

“s




Suppose a point Bl is generated by revolving a point 3 counterclockwise by 7,

from g, (r,0)=9,(r,0 +7) we can establish

F(B)=f(By).

Likewise, suppose a point [, is generated by revolving a point ' counterclockwise
by m,

from g, (r,0)=9,(r,6 +m) we can establish

fF(B)=f(B-

Therefore, the property allowing to be valid at z=f3

gp(r.0)=9p(r,6 +n)
can be also applied to 3,, giving

9p1(r,0) =0gp1(r,6 +m).

Repeating this will cause a point o such that satisfies



Ju (r1e) = 0q (r’e +TC)

to be infinite (countable) on a line at regular intervals.

For m=n=2, if g9, (r,0) has periodicity at point y not on the line between points

o and B as shown in the figure below, the number of lattice points having
periodicity will be infinite (countable) as with the case for m>2 n>2.

Ym

Therefore, it is contradictory.
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Suppose m=n=2 and there is a periodic point in continuous potency on a line.

On the line | is a sequence of points {0(, } such that converges into a point « .

Suppose 0, (r,€)=4,,(r,0+x) isvalid at each point «,, .

Assume a circle C, such that has center at «, as well as « on itself.
Assume f, that is the other point of intersection than o between the lines | and

C, . From the periodicity at «,, we can establish

fa)=1(5,).

Since a sequence of points {ﬂv} converges into a point @ and f(a)= f(f,) isvalid

for a any v, Unicity Theorem causes f(z) to constantly be a constant f(a) at
neighbourhood of the point « .
Therefore, it is contradictory.
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Supposing on the line with connecting the points «, £, the point ¥ betweentheline o and f

satisfies g,(r,0)=9,(r.0+7).

ﬂf

Let the length of segment of a8 be |aB| and the length of segment of ay be |ay].

Let the value of ratio of |8| and |ay| berational numbers, and each of p,q be relatively
prime numbers.

lor| _a

B p

From g,(r,0)=9g,(r,0+7), 9,(r,0)=9,(r,0+7),

we can establish the result which will be as the illustrations bel ow.

J“'ﬂm y, ssssssssss Y p-1

g—1
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Thus the sequence of points {ﬂj } {]/i }WiII be formed and ﬂq_l, 7 p-1 Will be anidentical point.

In case of the sequence of points {ﬂ J. } , {;/i } , the length of the points between some [ jo and

Yio isshortest.

New periodicity of funtion can be developed from ﬂjo and 7io-

When focused on only the sequence of points;

ey ¥ ﬁ ﬁ ﬁj ,83 (TT ] ﬁq—l

—a—E—= i i i i

e ¥ 71 Zj y; Gsessssses -p—l

The sequence of points of a segment of line aﬂq_l asdividedby (, anddividedby p, which
will be equivaent to determine the sequence of points to include each sequence.

As pand q aretherelatively prime numbers, the segment of line aﬂq_l can be divided by
pqg which will be adivision to satisfy the condition.
Therefore, in case of theratio of |aﬂ| and |a}/| isarational number, and with p,

be relatively prime numbers,

ler| _a

B p
the segment of line «ay divided by q will be the most closest periodic point to « ; and with this

point as the criteria, we can establish the points which have a periodicity to be infinite
(countable).

Let the value of theratio of |8 and |ary| beirrational number.
From g,(r,0)=g,(r,0+7),9,(r.0)=9,(r,0+7),
with the expansion of « from this, the sequence of points {,B]. }(—oo < j<o0), {7/i }(—oo <i <o)

can be created; however, no coincident will be found in {ﬂ i } {yi }
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Any ¢ isconsidered.
Andsome p,q areconsidered the relatively prime numbers.,

oyl g

af| P

Thevaue p,q to satisfy the above equation exists.

<¢&

In the point row {ﬂj} {;/i},thelength between fy_q ¥ p-1 will belessthane .

Vo
24 ¥ b TXIII p-1 ﬁfi’_l
—_—n——mw ==

7

ﬂq—l 7 p-1 asthe criterion, the development of the periodicity of funtion can be possible.

In this development, adistant of lessthan ¢ from the point « can be created around the point «,
and this will enable to create the sequence of points convergent to the point ¢« .

Theratio of |aﬂ| and |a7/| areimpossible to be irrational numbers.

Therefore, and a entire function to satisfy 1,2 or 3 exists. Also, a entire function is
periodic, it must be limited to the conditions 2 or 3.

14



