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2.1 Property of Laurent expansion 
Theorem 
Suppose )(zfw =  is a function in complex plane and regular for the region 

 ∞− ≦＜＜≦： 210 RzRD α ;  

and )(zfw =  is expansive by Laurent expansion and ∑
∞

−∞=
−=

ν

ν
ν α )()( zczf . 

Here, set )20( πθα θ ≦≦irez +=  and write ),()( θrgzf =  in polar form: then 

)2,(),( nrgrg πθθ +=  constantly for ),( θrg ⇔ ∑
∞

−∞=
−=

ν

ν
ν α n

n zczf )()(  

where n  is a natural number. 
 
(proof) 
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From )2,(),( nrgrg πθθ +=  we can establish the expression for ν∀ : 

)2( nii ercerc πθνν
ν

νθν
ν

+= . 

0≠r  allows to be valid )2( nii ecec πθν
ν

νθ
ν

+= . 

Assume 0≠νc , 

  
)2( nii ee πθννθ +=  

    
nii ee νπνθ 2⋅=  

12 =∴ nie νπ  

Unless ν  is a multiple of n , the equation above becomes contradictory, thus leading 

to 0=νc . 

Now, suppose ν  is an integer, we can establish the expression: 

∑
∞

−∞=
−=

ν

ν
ν α n

n zczf )()( . 

(end of proof) 
 
 
The following result is clear, but once more I would like to set out for you reference: 
1. Suppose )(zfw =  is a function in complex plane: then the necessary condition 

where it is expansive using Laurent expansion for ∞− ≦＜＜≦： 210 RzRD α  is 

       )2,(),( πθθ += rgrg  constantly for ),( θrg . 
2. Suppose )(zfw =  is a function in complex plane and expansive by Laurent 

expansion at neighbourhood of the point α . 

If )2,(),( nrgrg πθθ +=  constantly for ),( θrg  where n  is a natural number more 

than 1, then 

ν -th derived function 0)()( =ανf  where ν ( 0>ν )is not a multiple of n . 

 

From 2, )()( αnf  now “may be known from the periodicity in terms of its polar-form 
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function with center at α ” instead of formerly “can be known upon substituting α  
into it after differentiating it n  times.” 
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2.2 Periodicity of funtion 
Suppose )(zfw =  is a entire function defined in complex plane.   

)(zf  is transformed to its polar form ),()( θα rgzf =  using θα irez +=  at a any 

point α .  

Set n  as a natural number not less than 2, then the number of α  for ),( θα rg  such 

that constantly satisfies )2,(),( nrgrg πθθ αα +=  in complex plane is 

1. null; 
2. only one; or 
3. infinite (countable) at regular intervals on a line,  

each point satisfying the equation ),(),( πθθ αα += rgrg . 

(proof) 
1.Suppose a and b are real-number constants and bazw += , they clearly satisfies 1. 
2.Suppose n  is a natural number more than 1 and nzw = , they clearly satisfies 2.. 
3.Let us consider on a condition: zw cos= ; πα n= ),2,1,0,1,2( ⋅⋅−−⋅⋅=n . 
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Therefore, the periodicity of zw cos= is to be determined the region: π＜≦ )(0 zℜ . 
For 0=α ,  

( ) ( )))sin()(cos())sin()(cos(
0 2

1, πθπθπθπθπθ +++−+++ +=+ iiriir eerg  

      ( ))sin(cos)sin(cos

2
1 θθθθ iiriir ee ++− +=  

      ( )θ,0 rg=  

Therefore, ),( θα rg has periodicity at 0=α . 

For n  as an even number,  
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( ) 




 +=+

++++−++++ ))))sin()(cos(( )))sin()(cos((

2
1,

πθπθππθπθπ
π πθ

irniiirni
n eerg  

( )))sin(cos())sin(cos(

2
1 θθπθθπ irniirni ee +−−+− +=  

      ( ))sin(cos)sin(cos

2
1 θθθθ iiriir ee ++− +=  

      ( ))sin(cos)sin(cos

2
1 θθπθθπ iiriniirin ee +++−− +=  

      ),( θπ rgn=  

For n  as an odd number, 
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            ( )))sin(cos())sin(cos(

2
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      ( ))sin(cos)sin(cos

2
1 θθθθ iiriir ee ++− +=  

      ( ))sin(cos)sin(cos

2
1 θθπθθπ iiriniirin ee +++−− +=  

      ),( θπ rgn=  

Therefore, ),(),( πθθ αα += rgrg  is valid at a point πα n= on a line (real-number 

axis).  Thus, there is a function satisfying 3. 
In this case, it is unknown whether or not on real-number axis is the point 

)0( πββ << , it is also unknown whether or not any point on any other axis than 
real-number one has periodicity, which will be illustrated later in the property  
of general entire function. 
 
 
 
Let us consider using general entire function. 
First, suppose there are 2 points having periodicity;  

Assume )2,(),( mrgrg πθθ αα +=  at α=z ; and 

         )2,(),( nrgrg πθθ ββ +=  at β=z . 
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Put 2>m 、 2>n . 

Suppose there is a point β  on a circle αC  with center at α . 

Assume another circle βC  with center at β  having a any radius. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 Suppose a point 1β  is generated by revolving a point β  counterclockwise by mπ2 , 

from )2,(),( mrgrg πθθ αα +=  we can establish   

)()( 1ββ ff = .  

Likewise, suppose a point 1β ′  is 

generated by revolving a point β ′  

counterclockwise by mπ2 , 

from )2,(),( mrgrg πθθ αα +=  

we can establish 

)1()( ββ ′=′ ff . 
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Therefore, the property allowing to be valid at β=z  

)2,(),( nrgrg πθθ ββ +=  

can also be applied to 1β , giving  

)2,(),( 11 nrgrg πθθ ββ +=  

The number of periodic points is 3. 
 

For the foregoing, we began with α ; Now, beginning with 1β  to generate 1α  from 

α  leads to 

)2,(),( 11 mrgrg πθθ αα += . 

Therefore, the number of periodic points is 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Repeating this will cause a lattice point having periodicity to be infinite (countable). 
 
Suppose either m  or n  is not less than 3 and the other is 2. 
This condition, like that of 2>m 、 2>n , will also cause a lattice point having 
periodicity to be infinite (countable). 
 
Suppose periodic points is infinite (countable) in the whole complex plane like a lattice, 

)(zfw =  has a finite value at ∞=z . 
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From Liouville’s Theorem, )(zfw =  must be a constant. 
Therefore, it is contradictory that it has periodicity at infinite (countable) point in the 
whole complex plane. 
Naturally, it is also contradictory that it has periodicity in continuous potency in the 
whole complex plane. 
 
 
 
 
 
Put 2== nm . 

Suppose there is a point β  on a circle αC  with center at α . 

 
 
 
 
 
 
 
 
 
 
 
 
 

Assume another circle βC  with center at β  having a any radius. 
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Suppose a point 1β  is generated by revolving a point β  counterclockwise by π , 

from ),(),( πθθ αα += rgrg  we can establish   

)()( 1ββ ff = .  

 

Likewise, suppose a point 1β ′  is generated by revolving a point β ′  counterclockwise 

by π , 

from ),(),( πθθ αα += rgrg  we can establish 

)1()( ββ ′=′ ff . 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Therefore, the property allowing to be valid at β=z  

),(),( πθθ ββ += rgrg  

can be also applied to 1β , giving  

),(),( 11 πθθ ββ += rgrg . 

 
 
Repeating this will cause a point α  such that satisfies 
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),(),( πθθ αα += rgrg  

to be infinite (countable) on a line at regular intervals. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For 2== nm , if ),( θγ rg  has periodicity at point γ  not on the line between points 

α  and β  as shown in the figure below, the number of lattice points having 
periodicity will be infinite (countable) as with the case for 2>m 、 2>n . 
 
 
 
 
 
 
 
 
Therefore, it is contradictory. 
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Suppose 2== nm  and there is a periodic point in continuous potency on a line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

On the line l  is a sequence of points { }να  such that converges into a point α . 

Suppose ),(),( πθθ αναν += rgrg  is valid at each point να . 

 

Assume a circle νc  such that has center at να as well as α on itself. 

Assume νβ  that is the other point of intersection than α  between the lines l  and 

νc . From the periodicity at να we can establish 

)()( νβα ff = . 

 

Since a sequence of points { }νβ  converges into a point α and )()( νβα ff =  is valid 

for a any v , Unicity Theorem causes )(zf  to constantly be a constant )(αf  at  
neighbourhood of the point α . 
Therefore, it is contradictory. 
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Supposing on the line with connecting the points βα , , the point γ  between the line α  and β  

satisfies ),(),( πθθ γγ += rgrg . 

 
 
 
 
 
 
 
 

Let the length of segment of αβ  be αβ  and the length of segment of αγ  be αγ . 

Let the value of ratio of αβ  and αγ  be rational numbers, and each of qp,  be relatively 

prime numbers. 

p
q

=
αβ
αγ

 

 

From ),(),( πθθ ββ += rgrg , ),(),( πθθ γγ += rgrg , 

we can establish the result which will be as the illustrations below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

13

Thus the sequence of points { }jβ ,{ }iγ will be formed and 1−qβ , 1−pγ  will be an identical point. 

In case of the sequence of points { }jβ  ,{ }iγ , the length of the points between some 0jβ  and 

0iγ  is shortest. 

New periodicity of funtion can be developed from 0jβ  and 0iγ . 

When focused on only the sequence of points; 
 
 
 
 
 
 
 
 
 
The sequence of points of a segment of line 1−qαβ  as divided by q , and divided by p , which  

will be equivalent to determine the sequence of points to include each sequence.  

As p and q  are the relatively prime numbers, the segment of line 1−qαβ  can be divided by 

pq which will be a division to satisfy the condition. 

Therefore, in case of the ratio of αβ  and αγ  is a rational number, and with p , q  

be relatively prime numbers,  

p
q

=
αβ
αγ

 

the segment of line αγ divided by q will be the most closest periodic point to α ; and with this 

point as the criteria, we can establish the points which have a periodicity to be infinite 
(countable). 
 

Let the value of the ratio of αβ  and αγ  be irrational number. 

From ),(),( πθθ ββ += rgrg , ),(),( πθθ γγ += rgrg , 

with the expansion of α  from this, the sequence of points { } )( ∞<<−∞ jjβ ,{ } )( ∞<<−∞ iiγ  

can be created; however, no coincident will be found in { }jβ { }iγ . 
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Any ε  is considered. 
And some qp,  are considered the relatively prime numbers., 

ε
αβ
αγ

<−
p
q

 

The value qp,  to satisfy the above equation exists. 

In the point row { }jβ 、{ }iγ , the length between 1−qβ 、 1−pγ  will be less thanε . 

 
 
 
 

1−qβ , 1−pγ  as the criterion, the development of the periodicity of funtion can be possible. 

In this development, a distant of less than ε  from the point α  can be created around the point α , 
and this will enable to create the sequence of points convergent to the point α . 

The ratio of αβ  and αγ  are impossible to be irrational numbers. 

 
 
Therefore, and a entire function to satisfy 1,2 or 3 exists. Also, a entire function is 
periodic, it must be limited to the conditions 2 or 3. 


