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すばらしい対数公式の解説。 

 

三角法のみならず、あらゆる数学的ロジスティックス、増幅、簡易化、および迅速な説明にも有用 

 

著者・発明者：ジョン・ネペロ、スコットランド、マ－チフトニ－男爵、他 

 

エディンバラ、アンドレ－・ハ－ト図書館、1614 年 

 

 

敬愛する皆様、心よりお祝い申し上げます。 

 

チャ－ルズ皇太子、最も強大にして最も無敵なるジェ－ムズ、D.G.、

グレ－トブリテン、フランス、アイルランド国王、唯一の息子、ウェ

－ルズ公、ヨ－ク公、ロスチャイルド、偉大なスコットランド人、平

原の領主、等。D.D.D. 
 

（敬愛する皇太子殿下）数学ほど、高貴で英雄的な精神をあらゆる高貴で崇高な目的に向けて研ぎ澄ま

し、また鈍く怠惰な心を鈍らせる学問や学説はありません。博学で寛大な君主たちがあらゆる楽しみよ

りも数学を好んだのに対し、無知で怠惰な人々がその無知と怠惰ゆえに数学を敵として常に憎んできた

のも不思議ではありません。それでは、なぜ我々のこの新しい発明は、鈍い知恵と謙虚な悔い改めから逃

れ、陛下の才能とご支援に頼るべきではないのでしょうか？特に、この新しい対数計算法は、数学の計算

における原始的な難しさ（そうでなければ陛下の寛大なご性質を害する恐れがあったでしょう）を完全

に取り除き、記憶力の弱さを克服するのにも役立ちます。この方法を用いれば、正弦、正接、正割といっ

た原始的で一般的な計算方法、あるいは丸一日かけて解くよりも、1 時間でより多くの数学の問題を簡単

に解くことができます。したがって、この発明は物流をより容易かつ迅速にするものであり、殿下にとっ

てより一層喜ばしいものとなることを願っております。あらゆる分野において、あらゆる重要かつ優れ

た事柄を、正確に、時間通りに、容易に、そして時間や労力を費やすことなく迅速に処理すること以上に、

喜ばしく、有益なことなどあるでしょうか。したがって、（最も尊敬すべき王子様）このささやかな贈り

物は、たとえ小さく、殿下の功績や威厳には遠く及ばないものであっても、それでもなお、殿下の善良な

人道の確かな証であり、その証となることを切に願っております。もしあなたが、あるいは私が病気でほ

とんど衰弱している私の記憶に基づけば、近いうちに、おそらくこれらよりも偉大で、このような王子様

にふさわしい他の事業に着手されるであろうと存じます。その間、私たちは英国の偉大なる光であるあ

なたのご両親、そしてあなたの家系の輝かしい一族であり、私たちの未来の安らぎの源であるあなたに

敬意を表します。万王の王、万主の主、すべての名誉と栄光が永遠に帰せられるこの方が、末永く私たち

を守り、お守りくださいますように。 
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私たちは、最も穏やかな陛下に仕えることを誓います。 

 

ジョン・ネペリ－ズ 

 

 

驚異的な対数表の序文 
 

あなた方（誠実な数学の弟子たち）にとって、数学の実践において対数法ほど煩わしく、かつ遅延さ

せるものはない。それは、大きな数の乗算、除算、そして 2 乗および 3 乗の抽出である。これらの作業

は、冗長さという退屈さに加え、非常に落とし穴に陥りやすい。そこで私は、確実かつ迅速な技術によ

って、これらの障害を取り除く方法を思いついた。この目的のために幾度となく尽力した結果、ついに

優れた要約をいくつか見つけました。おそらく他の機会に譲るべきでしょう。しかし、中でもこの要約

ほど有用なものはないでしょう。この要約は、難解で冗長な乗算、分割、そしてル－トの抽出といった

作業に加え、乗算、除算、ル－ト化の対象となる数自体を作業から排除し、その代わりに別の数を作り

出し、単純な加算、減算、二分割、三分割によってその機能を果たすようにしています。これはまさに

奥義であり、（他の優れたものと同様に）広く普及すればするほど良いものです。私はこれを数学者た

ちの公共利用のために公開することを嬉しく思います。ですから、（数学者たちよ）どうぞ自由にお楽

しみください。そして、私が行ったことを慈悲深く受け入れてください。さようなら。 

 

 

三角法を学ぶ者へ 
 

もしあなたが天空、葉、赤道の弧の端を測り、曲線の度数を数えたいなら、 

そしてもしあなたが広がりから直線を知りたいなら、私が測地測量した半径を測りなさい。 

心を強く持ち、勤勉に働きなさい。葉の宝石であるバロによってここに与えられた対数を使いなさい。 

紙の上に多くの表を広げることは実りあるだろう。 

ペンで頻繁に書くことも実りあるだろう。 

これまではできなかった多くのことが、ここでは一挙両得になるだろう。 

ソフィアに私が新しいものをもたらすなら、天才から名声を得ようと望む最初の者が勝利するであろう 

Patricius Sandeus. 

 

 

D. I. ネパ－の対数について 
 

レギオモンタヌスは、語頭の省略（アフェレシス）および語頭の追加（プロスセシス）によって、未

知の正弦を導き出したと言われている。そして私たちは最近、ある類似の計算法者たちが、いくつかの

目的に関する探求を記録していたことを読んだ。とはいえ、すべての謎をこうして解き明かし、確かな
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規則で正しき道を示せる者など、誰一人としていなかった。ネイピアは詩の女神たちの誉れであり、ス

コットランド民族の栄光である。そしてそれを、小さな書物で示すだろう。ネイパ－という名はすでに

偉大さを帯び、吉兆さえも彼と並ぶが、真の意味でこの技芸において、彼に並ぶ者などいない。 

 

 

もう一つ 
 

ブキャナンよ、ナピアを友として迎えたまえ。 

我らの人々によって、我らのスコットランドが栄えますように。 

詩が最高の高みへと導かれたように、 

それはあなたのもとにとどまり、もはや進むべき先を持たない。 

同じように、数学もまたその頂点に達し、 

それはあなたの中にとどまり、進むべき道を持たぬのだ。 

 

 

読者へ 
 

この本は、言葉の量を見れば最も小さいが、その実用性を見れば、最も大きな書物である。 

学びなさい。そうすれば知るだろう－－小さな一冊の書物が、千巻の大著に匹敵する価値を持つのだ

と。 

アンドレアス・ユニウス、エディンバラ大学哲学教授 

 

 

対数について 
 

どんな関数でも、接線や切線（=接線や交線）を長く困難な労苦を経て求めるものだが、 

重い労苦もなく、すぐにあなたに、親愛なる読者よ、この小さな対数表が、それを与えてくれるのだ。 

ミリウスより 
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驚異的、対数法則の記述と、その使用法の説明：平面三角法と球面

三角法の双方、ならびにあらゆる数学的計算法（数値計算）におい

て、非常に広範囲で、極めて容易かつ迅速な使用方法について。 
 

第 1 巻 

第 1 章 定義について 
 

第 1 定義：線が「等しく成長する（＝均等に延びる）」と言われるのは、その線を描く点が、等しい時

間の間に、等しい間隔を進むときである。 

 
 

点 A を出発点とし、そこから別の点 B の動きによって線を引くとする。B は、最初の瞬間に A から

C に進み、次の瞬間に C から D に進み、その次の瞬間に D から E に進む、というように無限に続くと

しよう。このとき、線分 ACDEF... は、各区間 AC,CD,DE,EF... が等しく、また進む時間も等しいな

ら、この線は上記の定義によって「等しく成長している」と言える。 

 

系：したがって、この増加によって、等差の量が導き出されるのは必然である。 

 

上の図において、1 単位の時間で B は A から C まで、3 単位の時間で A から E まで進んだ。 同様に、

6 単位の時間で A から H まで、8 単位の時間で A から K まで進んだ。 さて、1 と 3、そして 6 と 8 とい

う時間の差はどちらも 2 で等しい。 したがって、対応する距離 AC と AE、および AH と AK の差、す

なわち CE と HK も等しくなる。 よって、これらは上に述べたように等差である。 

 

第 2 定義：線分が比例的に短くなると言われるのは、ある点がその線を等しい時間間隔で通過するたび

に、各区間で切り取られる線分の長さが、それぞれ対応する元の線に対して常に同じ比率を

保っているときである。 

 
 

例えば、線分 α から ω までを全体の終点とする線があり、これを比例的に減少させるものとする。

その線を通過してそれを減少させる点を β とする。そして、各区間の線分が、それが切り取られた線

に対して持つ比を q.r 対 q.s とする。したがって、q.s が r の位置でどのような比で分割されるかという

のと同じ比で（ユ－クリッド原論 10 巻 6 命題によれば）、α.ω も γ の位置で分割されるべきである。

このとき、点 ζ が α から γ へと最初の瞬間に移動すると、線分 α.ω から α.γ を切り取り、残され
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た部分 γ.ω を線または弧とする。次に、γ.ω を進む点 β は、2 番目の瞬間に、q.r と q.s の比と同様

の比で切り取った線分 γ.δ を切り取り、残りを δ.ω とする。そして今度は、その δ.ω から、3 番目

の瞬間に、同じ比で線分 δ.ε を切り取り、残りを ε.ω とする。それ（εから）から、同様に第 4 の

瞬間に、（ζ の流れによって）線分 εζ が切り取られ、残りに ζω が弧（または残りの線分）として

残される。この ζω から、5 番目の瞬間に ζ は同じ比率で線分 ζη を切り取り、ηω を弧として残

す。そしてこの操作は無限に続けられる。したがって私は言う、この全体の線 αω は（前述の定義に

基づいて）、比例的に減少して ηω となり、あるいは ζ が停止するいかなる最後の点においてでも比

例的に減少している。そして他の部分についても同様である。 

 

系：それゆえ、この等しい時間ごとの減少において、同じ比率の比例線が残されることは必然である。 

 

なぜなら、先に述べたように、減じられる終点（線分）の連続的な比例関係──すなわち αω、

γω、δω、εω、ζω、ηω、ιω、および κω など──およびそれらから切り取られた部分

──αγ、γδ、δε、εζ、ζη、ηι、ικ、および κλ──の間に存在する比例関係は、残され

た終点（線分）の比例関係にも必然的に同じく当てはまる。すなわち、γω、δω、εω、ζω、

ηω、ιω、κω、および λω のようにである。これはユ－クリッド原論 第 5 巻 第 19 命題および 

第 7 巻 第 11 命題によって明らかである。 

 

第３定義：無理数（＝数で正確に表せない量）は、十分に大きな有理数（近似値）によって、その真の

値から誤差がほとんどないように定義されることがある。このようにして、無理数もある意

味“数”として扱えるようになる。 

 

半径、すなわち全正弦を有理数 10,000,000 とするならば、45 度の正弦は 200,000,000,000,000 の平

方根である。この量は無理数であり、数では説明できないものであり、7071067（より小さい）と

7071068（より大きい）の間に含まれる。したがって、そのどちらとも 1（単位）しか違わない。した

がって、あの 45 度の正弦という無理数は、できる限り近く定義され、表現されていると言われる。す

なわち、小数部分（端数）を無視して、7071067 または 7071068 という整数によって定義されるときで

ある。というのも、大きな数においては、単位の断片（＝小数）を無視しても、感知できるような誤差

はまったく生じないからである。 

 

第４定義：同時運動とは、同時に、かつ同じ時間に起こる運動のことである。 

 

前述のように、B が A から C へ移動し、同じ時間内に ζ が α から γ へ移動するとしよう。このと

き、直線 AC および αγ は、同期運動によって描かれたものと呼ばれる。 

 

第５定義：（公理・公準）いかなる運動にも、それより遅いものや速いものを与えることができるなら

ば、必然的に、その運動と等速の運動（それは、より遅くもより速くもないものと定義され

る）を与えることもできることが帰結する。 
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第６定義：したがって、任意の正弦に対応する対数とは、全正弦がその正弦に向かって比例的に減少す

るあいだに、ある線が等しく増加したときのその線の長さを、できるかぎり近く定める数で

ある。このとき両方の運動は同期し、かつ最初は等速であったものとする。 

 
 

たとえば、前述の二つの図を再度考察してみよう。点 B は常に、そしてどこでも、ζ が初めて α に

あるときに動き始めたのと同じ、つまり一定の速度で動くものとする。そして最初の瞬間に、B が A か

ら C へ進み、同時に ζ も α から γ へ比例的に進んだとしよう。すると、線分 AC を定義する数は、

線 γω、すなわちその正弦の対数となる。次に第 2 の瞬間において、B が C から D へ進み、同時に ζ

が γ から δ へ比例的に進むならば、線分 AD を定義する数は、線分 δω の（あるいはその正弦の）

対数となる。同様にして第 3 の瞬間に、B が D から E へ等速で進み、同時に ζ が δ から ε へ比例的

に進むとするならば、線分 AE を定義する数は、線分 εω（またはその正弦）そのものの対数となる。

さらに第 4 の瞬間には、B が F まで進み、β が ζ へと進むとしよう。そのとき、AF の長さを定義する

数は、線分 ζω の正弦の対数となる。そしてこの順序が引き続き保たれるならば（先に述べた定義に

基づいて）、AG は ηω の正弦の対数、AH は ιω の正弦の対数、AI は κω の正弦の対数、AK は

λω の正弦の対数となり、このようにして無限に続く。 

 

系：したがって、全体の正弦（＝最大値）である 10000000 の対数は「無」、すなわち 0 である。そして

それに伴い、これより小さい正弦に対応する対数はすべて 0 より小さい（＝負）ものである。 

 

というのも、定義から明らかなように、全体正弦から正弦が小さくなるにつれて、対数は零（0）か

ら増加していく。したがって逆に、（いまだ正弦と呼ばれている）数が増加して全体正弦－－すなわち

10000000－－に近づくと、対数は減少して 0、つまり無に至るほかない。したがって、全体正弦（＝

10,000,000）を超えて増加する数（それらは「正弦」ではなく、「割線」あるいは「正接」と呼ばれ、も

はや正弦とは見なされない）については、その対数は 0 より小さい（＝負である）ことになる。 

 

したがって、常にゼロより大きい正の値をもつ正弦の対数は「過剰」と呼び、「＋」記号、または何

の記号もつけずに表します。一方で、ゼロより小さい対数は「不足」と呼び、「－」記号を前に付けて

表します。 

 

注意 
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初めのうちは、任意の正弦や量に対して、対数としてどんな値を割り当てても自由であった。しか

し、他のものよりも特に正弦全体に対して適切な値を割り当てておくほうが望ましい。というのも、将

来、もっとも頻繁に行う計算の中で、その対数の加減算によって、少しでも煩わしさが生じることを防

ぐためである。また、実際に使われる場面では、正弦全体より小さい値の正弦や数（つまり 0 より大き

く 1 より小さい数）の利用がより一般的である。ゆえに、そうしたもの（正弦全体より小さいもの）の

対数は「過剰＝正の値」とし、他のもの（＝正弦全体より大きいものや、あるいは負の場合）は「不

足）＝負の値」とする。もっとも、初めの段階では逆にしてもよかった（自由だった）のであるが。 

 

第２章 対数に関する命題 
 

命題１：比例する数または量の対数は、等差（同じ差）となる。 

 

比例する弦（正弦）、すなわち γω が εω に対して、ιω が λω に対するのと同じ比をなすとき、

それぞれの対数は AC,AE,AH,および AK という線分によって定義される数である（定義 6 によって明ら

かである）。そして AC と AE は CE という差をもち、AH と AK は HK という差をもつ。だが（定義 1

とその系から）CE と HK は等しい。したがって、前述の比例する弦の対数は等差である。そしてこれ

はすべての比例量において成り立つ。 

なぜなら、対数がその起源と生成（成立）の過程で獲得した性質や特徴は、今後も保持されるのが必

然だからである。しかしながら、対数はその起源および生成の過程において、この性質を帯び、この法

則を課されている。すなわち、それらに対応する正弦（または量）が比例関係にあるならば、対数は等

差でなければならないということである。（これは対数の定義および 2 つの運動から明らかであり、ま

た対数の構成の中でもいずれさらに明らかになるであろう。）したがって、比例関係にある量の対数は

等差である。 

 

命題２：三つの比例関係にある対数において、中項の二倍から第一項を引いたものは、第三項に等し

い。 

現代表記：logA:logB=logB:logC、2logB－logA=logC 

 

命題 1 によれば、第 1 項と第 2 項の対数の差は、第 2 項と第 3 項の対数の差に等しい。すなわち、第

2 項から第 1 項を引いたものは、第 3 項から第 2 項を引いたものに等しい。よって、等式の両辺に第 2

項を加えると、第 2 項の 2 倍から第項 1 を引いたものが第 3 項に等しいことになり、これが示したかっ

たことである。 

 

命題３：三つの比例する数の対数においては、中項の 2 倍が両端項の和に等しい。 

現代表記：A:B=B:C、logA＋logC=2logB 

 

命題 2 により、第 2 項の 2 倍から第 1 項を引いたものは第 3 項に等しい。この等式の両辺に第 1 項を

加えれば、第 2 項の 2 倍は第 1 項と第 3 項の和に等しくなり、すなわち両端項の和に等しくなる。これ

が証明すべきことであった。 
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命題４：4 つの比例数の対数において、第 2 項と第 3 項の和から第 1 項を引いたものは、第 4 項に等し

い。 

現代表記：A:B=C:D、logB＋logC－logA=logD 

 

命題１によって、4 つの比例数の対数において、第 2 項から第 1 項を引いたものは、第 4 項から第 3

項を引いたものに等しい。両辺に第 3 項を加えると、第 2 項と第 3 項の和から第 1 項を引いたものが第

4 項に等しくなり、これが求められていたことである。 

 

命題５：4 つの比例数の対数において、中間の 2 つ（つまり第 2 項と第 3 項）の和は、両端の 2 つ（つ

まり第 1 項と第 4 項）の和に等しい。 

現代表記：logB＋logC=logA＋logD 

 

前の命題４によれば、第 2 項と第 3 項の和から第 1 項を引いたものは第 4 項に等しかった。そこで、

等式の両辺に第 1 項を加えると、第 2 項と第 3 項の和が、第 4 項と第 1 項の和に等しくなり、これが証

明すべきことであった。 

 

命題６：4 つの連続比例数の対数において、中間のいずれか一方の 3 倍は、遠い端の項と近い端の 2 倍

の和に等しい。 

現代表記：A:B=B:C=C:D → logA,logB,logC,logD は等差数列 

3logB=logA＋2logD または 3logC=logD＋2logA 

 

命題２によれば、第 2 項（すなわち中項）の 2 倍から第 1 項を引いたものは第 3 項に等しい。 

また命題３によれば、その結果の 2 倍、すなわち第 2 項の 4 倍から第 1 項の 2 倍を引いたものは、両端

の項、すなわち第 4 項と第 2 項の和に等しい。さて、もしこの等式の両辺から第 2 項を引けば、第 2 項

の 3 倍から第 1 項の 2 倍を引いたものが第 4 項に等しくなる。さらにこの等式の両辺に第 1 項の 2 倍を

加えれば、第 2 項の 3 倍は、第 4 項と第 1 項の 2 倍の和に等しくなる。これは我々が証明しようとして

いたことである。 

 

注意 
 

ここまでに私たちは対数の生成とその性質を説明してきた。ではそれがいかなる計算によって、また

どのような計算法によって得られるかを、この箇所で説明しなければならないだろう。しかし私たち

は、対数表そのものと、それに対応するすべての対数値を、象限（90 度）の各 1 分ごとに完全に提示し

ているので、ここでは対数の作り方（構成法）の解説は、よりふさわしい時に譲ることにして、今はた

だちにその使用法に移ることにする。というのも、まずは使用例とその有用性を先に味わってもらうこ

とで、その後に示す予定の他の事柄も、より好ましく受け入れられるか、あるいは少なくとも沈黙の中

に埋もれていても、不快には思われないだろうからである。というのも私は、他の事柄を軽々しく公に
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して悪意ある人々の批判にさらす前に、まず学識ある人々によるこれら（＝対数使用法など）について

の判断と評価を待ちたいと思うからである。 

 

第３章 対数表およびその７列の構成に関する説明 

 

第 １節：第 1 列は、0 度から 45 度まで増加していく弧（角度）を明示的に示したものであり、また

（明示はされていないが）それに対応する半円（180 度）までの残りの弧も含まれていると

暗黙的に理解される。 

第 ２節：第 7 列は、四分円（90 度）から 45 度まで減少していく弧（角度）を示しており、また（明

示されていないが）それに対応する半円までの残りの弧も含まれていると暗黙に理解され

る。 

第 ３節：したがって、片方の列の弧は、もう一方の列に正対して対応する弧の余角となっている。 

     注釈：第７列、余角＝90°－第１列の角度 

第 ４節：そして第 1 列には、すべての直角三角形におけるより小さい鋭角が表されている。 

第 ５節：そして第 7 列には、それに対応して、その同じ直角三角形のより大きい鋭角が配置されてい

る。 

第 ６節：第 2 列には、第 1 列の弧に対応する正弦が載っている。 

第 ７節：これら（の辺）は、直角三角形におけるより小さい角を挟むより短い脚であり、その底辺、

すなわち斜辺は全正弦である。 

第 ８節：第 6 列には、第 7 列の弧に対応する正弦がある。 

第 ９節：これら（の辺）は、同じ直角三角形のより大きい角を挟むより長い脚であり、その斜辺はす

なわち全正弦である。 

第１０節：それゆえ、あらゆる直線的な直角三角形に対して、等角かつ相似な三角形が作られる。それ

は、全正弦、第 2 列の正弦、そしてその向かいに対応する第 6 列の正弦によって成る。 

第１１節：第 3 列には、弧と左側の正弦の対数が含まれている。 

第１２節：これらは、同じ直角三角形におけるより短い辺と斜辺との比の対数である。 

第１３節：そしてまた、これらは弧および右側の正弦に対する補数対数であり、我々はそれらを逆対数

と呼ぶ。 

第１４節：第 5 列には、弧と右側の正弦の対数が含まれている。 

第１５節：これらは、同じ直角三角形におけるより長い脚と斜辺との比の対数である。 

第１６節：そしてこれらは、弧と左側の正弦に関する逆対数、すなわち補数対数である。 

第１７節：第 4、すなわち中央の列は、第 3 列と第 5 列の対数の差を含んでいる。したがって、この列

は二重性を持ち、豊富なもの（過剰なもの）と不足したものがある。 

第１８節：豊富なもの（過剰なもの）とは、第 5 列の対数から第 3 列の対数を引いた差から生じる差異

である。 

第１９節：一方、不足の差異とは、第 5 列の対数から第 3 列の対数を引いたときに生じる差異であり、

それゆえにそれらはゼロより小さいのである。 

第２０節：過剰の差異は、左側の弧に対応する差分値と呼ばれる。 
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第２１節：そしてそれらは、直角三角形における小さい方の脚と同じ三角形の大きい方の脚との比の対

数である。 

第２２節：そしてまた、それらは左側の弧に対する正接、すなわち第二の量の対数である。 

第２３節：そして不足（負）の差は、右側の弧に対する差分数と呼ばれる。 

第２４節：これは、直角三角形の長い方の脚と、同じ三角形の短い方の脚との比に対応する対数であ

る。 

第２５節：また、それらは右側の弧に対応する正接の対数である。 

第２６節：すべての左側の弧と、その半円に対する補弧は、右側の弧・正弦・対数および欠損差の補弧

と呼ばれる。 

第２７節：そして逆に、すべての右側の弧とその半円に対応する残りの弧（補弧）は、左側の弧・正

弦・対数および過剰な差分（対数）の補弧と呼ばれる。 

 

注意 
 

第２８節：ここで注意すべきことは、もし第 3 列の対数に負号（－）を付して欠損対数とすれば、それ

は右側の弧（第 7 列）の斜辺、すなわち 割線の対数となる、ということである。 

第２９節：そしてこれらもまた、直角三角形の斜辺とその短辺との比の対数となる。 

第３０節：そして、もし第 5 列の対数を欠損（すなわち負）とすれば、それらは第 1 列の左側の弧にお

ける斜辺、すなわち正割の対数になる。 

第３１節：これらもまた、直角三角形の斜辺とそのより長い辺との比の対数となる。しかし、平面三角

法の理解においては、正弦とその弧、それに対応する対数と差分値のみで十分であり、一

方、球面三角法においては正弦を除けば、弧とその対数および差分値だけで足りる。したが

って、斜辺およびセカントは表から除外し、また、球面における正弦も無視すべきだと考え

る。もっとも、ついでに述べておくと、あなたが望むなら、これらすべてを平面三角法では

かなり円滑に使えることを示そう。だが球面三角法では、（それらは）ほとんど使えない。 

 

第４章 表とその数値の使い方について 

 

第 1 節：正弦・正接・逆余弦が正確に記載された各表において、それらの対数もまた同様に正確に与え

ること。 

 

第 3 章の第 11 節および 14 節によれば、与えられた正弦を我々の表の第 2 列または第 7 列で見つけれ

ば、それに対応する対数は同じ行の第 3 列または第 5 列に見つかる。したがって、このようにして、表

にされた正弦の対数が正確に得られる。一方、正接および割線の値が、それぞれの表で見つけられる

と、それに対応する弧（角度）が得られる。既知の弧（角度）に基づいて、我々の表は第 22 節および

第 25 節に従い、正接の対数、またはその差分値を、それぞれの符号とともに中央の列に示している。

また、割線の対数は逆数として第 3 列および第 5 列に示されているが、第 28 節および第 30 節に従い、

それらには符号「－」が前置されている。したがって、正弦、正接、割線の表にされた対数が得られ

る。 
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現代表記：Log(SinA)－Log(Sin(90°－A)) 

=Log(SinA)－Log(CosA) 

          =Log(SinA/CosA) 

          =Log(TanA) 

     Log(SecA)=－Log(TanA) 

 

正弦の例 
 

正弦 6946584 の対数を求めたい。その正弦は、ちょうど表の第 2 列に見つかり、対応する弧（角度）

は 44 度 0 分である。そして同じ行の第 3 列に、その正弦に対応する対数 3643349 が載っており、これ

が私の求めていた対数である。次に、正弦 7213574 の対数を求めよう。この正弦は、46 度 10 分の弧に

対応するものとして見つかり、それに近い値として 3266204 がある。これが求めていたその正弦の対数

である。 

 

正接の例 
 

正接 2186448 の対数を求めよう。この正接には、その専用の表において 12 度 20 分の弧が対応して

おり、この弧に対して、我々の表の中央の列には「差分値を含んだ対数」15203064 が対応している。

これが求めていた対数である。同様に、正接 45736291 の対数を求めようとするなら、正接表において

これに対応する弧は 77 度 40 分である。そしてこの弧に対して、我々の表には同じ差分値が載っている

が、それは「欠損のある」、つまり符号が負（－15203064）である。 

 

割線の例 
 

割線 18118009 には、割線表において 56 度 30 分の弧が対応する。そしてこの弧に対して、我々の表

には逆数として扱われた負の対数（すなわち－5943212）が対応し、これが先に挙げた割線 18118009

の対数である。同様にして、割線 13118337 の対数として－2714255 が見つかるだろうし、割線

13960592 には－3336533 の対数が対応しているのを見出すだろう。 

 

第２節：与えられた数値で、正弦・正接・割線の表に載っていないものについては、その対数を推定す

ることである。 

 

与えられた数に非常によく似た数、あるいはそれが与えられた数の 10 倍、100 倍、1000 倍、1 万

倍、10 万倍、または 100 万倍である場合、その値を我々の表の第 2 列または第 6 列、あるいは希望す

るなら正接または割線の表の中から探し、その角度（弧）を記録せよ。その角度に対応する対数は我々

の表から引き出され、まさにあなたが求めるものである。ただし、心の中で、あるいは記憶のために、

桁数や位取り（多重性）を記号によって表しておくことを忘れないように。たとえば、表には載ってい

ない数 137 の対数を求めたい場合：中間の数値（＝表に載っている近い数）として、14544、136714、
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1371564 を正弦の表の中に、13705046 を正接の表に、そして 13703048 を割線（sec）の表に見出すこ

とができる。この 13703048 は、与えられた数 137 に最もよく似ている（最も近い）ものである。ただ

しその際、その最後の、あるいは右端の 5 桁を切り捨てることを暗黙に理解しておくこと。ゆえに、こ

の割線 13703048 と、その対応する角度 43 度 8 分に対する対数を、（先に述べた方法、または第 3 章の

第 28 節および 30 節に基づいて）求めると、－3150332 が得られる。この値は、与えられた数 137 の対

数として扱うことができる。ただし、5 桁を切り捨てたことを忘れずに、あるいは記憶のため、次のよ

うに明示的に表記しておいてもよい：－3150332.－00000。同様に、前述の正接 13705046 によって、

与えられた数 137 の対数を求めたいとするならば、この正接に対応する角度 53 度 53 分によって、（第

25 節に従って）中央の列において－3151790 が得られる。これは正接 13705046 の対数である。この数

（13705046）は、与えられた数 137 を「桁において」上回っているため、－3151790.－00000 が与え

られた数 137 の対数ということになる。とはいえ、この対数は、13705046 が 13700000（すなわち与え

られた数 137 の 100 万倍）から離れていればいるほど、それだけ不正確になります。 

しかし、この誤差は
5046

100000
を超えることはありません。もし上に記された正弦 1371564 によって、与

えられた数 137 の対数を求めようとするならば、それ（対数）は（この方法および第 3 章第 11 節によ

って）19866327－0000 であることがわかるだろう。また、記号「＋」を使う場合にも操作方法は変わ

らない。つまり、与えられた量の桁数が、それに最も類似した正弦の桁数を超えるときである。たとえ

ば、もし離散量 232702 の対数を求めようとするならば、表の中に、それに最も類似した正弦 23271 を

見つけることになるだろうが、この正弦には 1 桁だけ足りない。したがって、この表中の対数（第 3 章

第 11 節による）を求めると、それは 60631284 である。そこに「＋」記号を挟んで、1 つの数字（=

桁）を加える。すると、求める数 232702 の対数として 60631284＋0 となる。しかし、対数を求める最

良の方法は、そもそもそれらが最初に作られた方法であり、それについては別の場所で述べることにす

る。 

 

第３節：それゆえ、前の第 1 節で 単純で純粋な対数が示されたように、今回の節では、数字が付加さ

れることによって不純な対数（調整を加えて求めた近似値）が現れるのである。 

 

第４節：同じ符号の対数を加えるとは、それぞれの和を共通の符号で示すことである。 

 

たとえば、－56312 に－73495 を加えると、－129807 になる。同様に、4216 に＋5392 を加えると、

9608 が得られる。このように、3219－00 に 4360－000 を加えると、7579－00000 となる。 

 

第５節：異符号の対数を加えるとは、それらの差をとり、大きい方の数の符号をつけて表すことであ

る。 

 

たとえば、－210 に 332 を加えると、＋122 が得られる。また、－210 に 192 を加えると、－18 が得

られる。同様に、－210.＋000 に 332－00 を加えると、122＋0 となる。また、－210－000 に 192＋00

を加えると、－18－0 となる。 
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第６節：2 つの対数について、一方は他方の「欠如形」、他方は「過剰形」と正しく呼ばれる。というの

も、両者は数値や桁はまったく同じだが、符号（＋と－）が完全に逆であるからである。 

 

たとえば、過剰な 56312 の欠如形は－56312 である。また、過剰な 56312－00 の欠如形は、－56312

＋00 であり、同様に、過剰な 56312＋00 の欠如形は、－56312－00 である。 

 

第７節：過剰な対数を引くことは、それの欠如形（＝負の対数）を加えることである。 

 

たとえば、正の対数 56312 を－73495 から引くことは、その負の形（－56312）を－73495 に加える

のと同じである（第 6 節参照）。すると（第 4 節のル－ルにより）、結果は－129807 になる。同様に、

56312＋00 を－73495－000 から引くことは、－56312＋00 をそれに加えるのと同じであり、結果は－

129807－00000 となる（第 4・第 5 節参照）。 

 

第８節：「負の対数を引くこと」は、それに対応する正の対数を加えることと同じである。 

 

たとえば、負の対数－4216 を正の数＋5392 から引くことは、4216 を 5392 に加えることと同じであ

り、（第 4 項により）9608 が得られる。同様に、－4216＋00 を 5392＋0 から引くのは、4216－00 を

5392＋0 に加えることと同じであり、9608－0 が得られる。 

 

第９節：対数を数値として増減させても、その本来の値を保ったままである場合、それは次のいずれか

の対数を加えたり引いたりすることである。すなわち、23025842＋0、あるいは 46051684＋

00、69077527＋000、92103369＋0000、115129211＋00000 のようなものである。これらは、

実際には何の意味も持たない 

 

たとえば、対数 39156－0 に対して、次のいずれか（たとえば 23025842＋0）を加えると、結果とし

て得られるのは 23064998 という、数としてはより大きな値である。しかしその価値は、39156－0 とま

ったく同じである。なぜなら、この 39156－0 という対数の「量」、つまり「数値としての実際の値」は

（この書の第 12 節・第 13 節によれば）9960920 だからである。このうち、記号「－0」が示すように

末尾の一桁を取り除けば、996092 となる。しかし、その対数 23064998 の「数値としての値」も（この

書の第 12 節および 13 節によれば）やはり 996092 であり、先ほどの値と同じである。 

 

減算の例 
 

対数 25451769 を被減数とし、これから 23025842＋0 を引くと、2425927－0 が残る。これは、最初

の（つまり 25451769 の）数値の値と同じである。というのも、単純で純粋な対数（2425927）の値

は、どちらの対数の値の 10 倍に相当するからである。したがって、それらの対数の値は互いに等しい

のである。実際、ログ 23025842＋0 を加えるということは、その対数が加えられる数の値を 10 分の 1

にし、その 10 分の 1 に、1 桁の数字を加えることを意味するにすぎない。一方、同じログ 23025842 を
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引くということは、引かれる側の対数の値を 10 倍し、この 10 倍の値から 1 桁の数字を取り除くことを

意味する。したがって、どちらの操作でも、元の数値（実際の値）は変わらないまま残るのである。 

 

第１０節：したがって、いくつかの桁を欠いた対数に、その桁数と同じだけの桁を持つ上に記された対

数の一つを加えるか、あるいは桁の多い対数から同じ桁数の対数の一つを引くと、不純な対

数から純粋な対数で、しかも同じ値のものが得られる。 

 

前述の最初の例のように、不純な対数 39156－0 は、その桁とマイナス記号（－）を取り除いて浄化

されるべきである。そこで、それに 23025842＋0 を加えれば、上記のように 23064998 という「純粋な

対数」が得られ、その値は元の値と同じになる。同様に、対数 63584468＋00 という不純な対数から、

46051684＋00（同じ桁数の）を引けば、17532784 という純粋な対数が残り、その値は、もとの不純な

対数と同じである。 

 

第１１節：もし、「数としては小さい欠損の対数」に、第九節で述べた対数のうち、より大きい数値の

ものを加えれば、同じ値を持つが「数としては大きい豊富な対数」が得られる。 

 

たとえば、対数－28595270－0000 に、第 9 節で述べられている数のうち、より大きな数値（例えば

46051684＋00）を加えると、その結果として 17456414－00 が得られる。それは、元と同じ値を持つ

が、数値としては豊富な（大きな）対数である。 

 

第１２節：私たちの表（＝対数表）に、数値の形で記されている対数に関しては、三角関数（正弦・正

接・正割）であれ、その他どのような数値的な値であれ、第 3 章の第 11 節、14 節、22 節、

25 節、28 節、30 節にしたがって、あなたはそれらを表示することができる。それが純粋な

対数であろうと、不純な対数であろうと関係ない。 

 

たとえば、36 度 40 分の対数、すなわち第 3 列にある 5155724 に対応するのは、第 2 列の正弦

5971586 である。そして、この対数の「欠損形」すなわち－5155724 に対応するのは、割線表における

16745970 であり、これは 53 度 20 分の正割である。同様に、第 4 列にある差対数 2950794 に対応する

のは、正接の表における 7444724 であり、その「欠損形」すなわち－2950794 に対応するのは、

13432331 という正接であって、これは 53 度 20 分の角に対するものである。同様に、第 5 列にある対

数 2204930 に対応する数値（第六列）は 8021232 であり、これは角度 53 度 20 分の正弦である。そし

て、その「欠損対数」すなわち－2204930 に対応する数値は 12466913 であり、これは角度 36 度 40 分

の正割に一致する。 

 

不完全対数の例 
 

不完全な対数 97796－0 の値を求めるとする。この数に対応する正弦は、我々の表では 9902681 であ

る。これから右端の数字を一桁取り除け（－0 がそれを示しているように）、すると 990268 となる。こ

れが、求める対数 97796－0 の値である。よって、対数 25451769＋00 の値は 78459100 である。とい
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うのも、純対数 25451769 に対応するのは、我々の表においては正弦 784591 だからである。同様に、

対数－349136－00（第 4 列の 46 度のところにある）の値は 103553 となる。なぜなら、46 度の正接は

10355302 だからである。同様に、対数－6350305－00（第 3 列の 32 度のところにある）の値は

188708 である。なぜなら、32 度の余角、すなわち 58 度の正割は 18870800 であり、この数の末尾 2 桁

（00）は、対数に付された「－00」のために削除されるべきだからである。 

 

第１３節：表に存在しない対数の値については、近似して数値を求めよ。 

 

普通の測地計算では、与えられた対数に最も近い対数が表にあれば、その対数に対応する数値を近似

値として使うだけで大抵は十分である。しかし、もしもっと正確な値（目標）に近づきたいのであれ

ば、その対数を少しずつ増減させ、もとの対数の意味・値を保ったままで、表に載っている対数になる

か、それとも表の中のどれかに十分似た値になるまで試行する。そして、その近似された対数の値か

ら、前述の方法により数値を導けば、それが求める値である。たとえば、対数 23149721＋0 の値を求め

たいとする。この値に似たもの、あるいは十分近いものは表には載っていない。しかし、この対数から 

23025842＋0 を引けば、123879 が残る。この 123879 に対して、81 度の下にある表には、十分に似た

値 123881 が見つかる。この 123881 に対応する正弦は 9876883 であり、先ほどの方法で求められたこ

の値こそが、与えられた対数 23149721＋0 に対応する求めていた値である。 

 

注意 
 

この節とそれに続く第 2 の注意（注記）において、与えられた数の対数、あるいは与えられた対数に

対応する数値が（もし表に載っていなければ）いかにして最も正確に導き出されるかを述べたい。すな

わち、対数が生成されたり、解かれたりする本来の方法によって、すなわち、与えられた正弦（または

数）から、幾何的に比例する中間項（＝幾何平均）をたどって徐々に小さな値へと下降し、対数表にあ

る最も近い小さい正弦に到達するまで進む。同様に、その表にある正弦に対応する対数値からも、同じ

数だけ算術的中間項（＝算術平均）を使って下降していけば、最後に得られる値が、最初に与えられた

正弦の対数になる。逆に、与えられた対数からその対数表にある最も近い小さい対数まで、算術平均を

使って下降し、その表にある対数に対応する数値からも、同じ数の幾何平均を使って下降すれば、最後

に得られる値が、最初に与えられた対数に対応する数値となる。しかし、ある連続した幾何比（＝等比

数列）に対して、どの算術的等差（＝等差数列の公差）が適合し、対応するのかを見つけ出すことは、

並みの才知ではできない。 

 

第５章 対数の非常に広範な使用と、それによる実践的・迅速な計

算について 

 

第１問題 

三つの比例する数の対数のうち、中間の対数と一方の端の対数が与えられたとき、残りの端の対数、

またはその比例数値（もしくは角度）を、ただ一度の二倍操作と減算で求めよ。 
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第 2 章の命題 2 によれば、（中項、すなわち対数）の 2 倍から一方の端項を引いたものは、もう一方

の端項に等しくなるので、与えられた中項の対数の 2 倍から、与えられた端項の対数を引けば、求める

もう一方の端項の対数が残る。その対数に対応する弧（角度）は、表の第 1 列・第 7 列にあり、その正

弦（サイン）は、第 2 列または第 6 列にあり、そのセカントやタンジェント（余割線や正接）は、それ

ぞれの表の中で、第 3 章の第 1,2,6,8,11,14,22,25,28,30 節において、求めるべき端項（角度や関数値）

として扱われる。 

 

例 
 

10000000 を第 1 項、7071068 を第２項とする比例数列が与えられた場合、第 3 項を求めよ。これは

普通、中項（すなわち第 2 項）を自乗し、その平方を第 1 項で割って求められる。しかし我々は、もっ

と簡単に次のようにする。中項の対数 3465735 を 2 倍し、それによって得られた 6931470 から、第 1

項の対数（それは 0）を引く。すると、6931470 が求める第 3 項の対数として残る。この対数に対応す

る弧（角度）は 30 度、正弦は 5000000（すなわち求める比例数）であることが、表を見ればわかる。

したがって、10000000, 7071068, 5000000 は三つの比例数（等比数列）であり、そのうち最後の項は、

ただ中項の対数を 2 倍して、そこから初項の対数を引くという方法だけで求められた。これは、私たち

が先に約束した（理論の）とおりである。同様に、比例する２数、すなわち第 1 項 10562556 と第 2 項

7660445、あるいは少なくともその対数、すなわち－547302 と 2665149 が与えられているとする。第 3

項（比例する数）は、次のようにして得られる。中項（=7660445）の対数 2665149 の 2 倍、すなわち

5330298 から、初項の対数－547302 を引く。（第 4 章第 8 節に従って）結果として得られる対数は

5877600。これは角度に換算すれば 33 度 45 分に相当し、その正弦は 5555702 である。これが、求めて

いた第 3 の比例数である。 

 

第 2 問題 

三つの比例数の対数から、両端の対数が与えられていれば、中項、およびその比例数と対応する弧

を、ただ一回の加算と二等分（割り算）によって求めることができる。 

 

第 2 章第 3 節によれば、中項の対数の 2 倍は、両端の対数の和に等しい。それゆえ、両端の対数を加

えよ。その和を 2 で割れ。すると、中項の対数が現れる。そしてその対数から、中項の値およびそれに

対応する弧（角度）が、表の列や章節に従って（上に述べた通り）知られるようになる。 

 

たとえば 
 

端の値として 10,000,000 と 5,000,000 が与えられているとする。このとき、中項（中間値）を求め

よ。これは普通、与えられた二つの数を互いに掛け合わせ、その積の平方根を取り出すことによって求

められる。しかし、私たちは次のようにすれば、もっと簡単にできる。両端の値の対数、すなわち最初

の（値）の対数 0 と、最後の（値）の対数 6931470 を加える。そして、その合計 6931470 を二等分す

る。すると、求めていた中間値の対数は 3465735 となる。したがって、その中間値は 7071068 であ
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り、その（値に対応する）弧は 45 度であることが、前述の方法によって得られる。また、両端の値と

して 10562556 と 5555702 が与えられているとする。それらの対数は、それぞれ－547302 と 5877600

である。これら（先ほどの両端の値の対数）の和は 5330298 である（第 5 節・第 4 章による）。これを

二等分すると、2665149 という対数になる。そして、この対数に対応する弧（角度）は 50 度である。

また、その弧の正弦、すなわち求めていた比例中項（幾何平均）は 7660445 である。しかも、これは

加算と二等分だけで求められたものである。 

 

第３問題 

4 つの比例関係にある対数のうち、3 つ、またはそれらに対応する弧（角度）が与えられていると

き、残りの 1 つを求めよ。その（残りの 1 つの）対数と、それに対応する正弦および弧（角度）を、1

回の加算と減算だけで求める。 

 

この問題においては、求めるべきものを常に第 4 項と見なす。すなわち、与えられたものの第 1 項が

第 2 項に対する関係と同じ比で、第 3 項が求めるべきものに対するように設定する。そして、このよう

に設定された場合には、第 2 項と第 3 項の対数の和から第 1 項の対数を引いたものが、第 4 項の対数に

等しくなる（第 4 部第 2 章による）。したがって、第 2 項と第 3 項の対数を加え、そこから第 1 項の対

数を引けば、求める第 4 項の対数が得られる。そして、その対数から第 4 項そのものと、その（角度に

対応する）弧が求まる。 

 

たとえば 
 

7660445 が 9848078 に対するように、5000000 が求めるべき第 4 項に対する。通常の方法では、第 2

項と第 3 項を掛けて、それを第 1 項で割って求める。しかし君は、もっと簡単に次のようにできる。第

2 項（153088）の対数と、第 3 項（6931469）の対数を足すと、7084557 となる。そこから第 1 項の対

数（2665149）を引くと、4419408 が残る。これが第 4 項の対数である。その正弦は 6427876 で、これ

が求める第 4 項そのものであり、その角度は 40 度である。同じ結果は、（正弦を無視して）ただ三つの

自分の弧、すなわち 80°、30°、そして 50°が与えられた場合でも得られる。なぜなら、80°と 30°

の弧の対数から 50°の対数を引けば、40°の対数が残るからである。そしてこのようにして、正弦や

それらの掛け算や割り算を使わずに、40°という弧そのものがわかるであろう。これは最初に約束した

とおりである。 

 

別の例 
 

正接）、すなわち第 2 項の数 43°が、正弦 57°に対するように、第 2 項、すなわち正接 35°が、あ

る第 4 項の正弦に対するものとする。その第 4 項の弧を、正弦や正接を使わずに（つまり、それらを無

視して）次のようにして求める。35°の差対数 3563784 を中央列から見つけ、57°の対数（1759372、

第 5 列）に加える。その和（5323156）から、43°の差対数 698698 を引くと 4624458 が残る。これが

第 4 項の正弦の対数である。これを第 3 列で第 11 節第 3 章の方法により探すと、その隣の第 1 列に約

39°2′が見つかる。これが求める第 4 比例項、すなわち正弦の角度である。この方法によって、比例
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関係にある弧（角度）は、それらの正弦、正接、正割、その他いかなる比例項をも用いずに求められ

る。これは確かに、平面三角形の角を測ることや、球面三角法全体にとって非常に役立つ簡便法であ

る。これは適切な箇所で明らかになるだろう。 

 

第４問題 

4 つの連続比例量（またはその弧）が与えられた場合、その中間のどれか一つや任意の弧を、複雑な

立方根の計算の代わりに、簡単な三等分法を用いて求めることができる。 

 

これらの（あるいはそれらの）対数のうち、それぞれの中間の値の三倍は、最も遠い端の値と隣接す

る端の値の二倍の和に等しい、（これは）第 2 章の命題 6 による。したがって、どちらか一方の端の対

数を 2 倍し、それにもう一方の端の対数を加える。そして、その和を 3 等分すれば、最初の端に隣接す

る中間の対数が得られる。同様にして、もう一方の中間の値も求められる。例えば、端の値として最初

が 4029246、最後が 10562556 とする。中間の値が求められるが、それは立方根の抽出をせずに見つけ

ることができる。与えられた対数は 9090051 と－547302 である。このうちの一方の 2 倍、すなわち

18180102 にもう一方の対数を加えると 17632800 となる。この値を 3 等分すると 5877600 が得られ

る。対数の小数部が 5555702 であるのが、求めていた最初の中間値である。まず、ある数（－

547302）の 2 倍（つまり－1094604）をとり、そこに別の数（9090051）を加える。すると得られる積

は 7995447 である。この 7995447 を 3 等分（3 乗根のように扱う）すると 2665149 が得られる。この

2665149 は、対数であり、その対数の終端は 7660445 である。この対数はまた中間値を求めるために使

われる。このようにして、4 つの連続した比例数が得られる。それは、4029246、5555702、7660445、

10562556 である。 

 

別の例 
 

与えられた端の値が 14142135 と 5000000 である。これらの値のうち、14142135 の対数は、我々の

表）で－3465735 と見つかった。一方、5000000 の対数は 6931470 であり、その 2 倍は 13862940 であ

る。この 13862940 に－3465735 を加えると 10397205 になる。これを 3 等分すると＋3465735 にな

る。この値は、最小の端値 5000000 に次ぐ中間の比例数、つまり約 7071068 に対応する。このよう

に、－3465735 の 2 倍は－6931470 である。そこに＋6931470 を加えると、結果は 0 になる。この 0 を

3 等分）しても、やはり 0 になる。この値の終端と値は 10000000 であり、これは残りのより大きい中

間値に対応する。したがって、これら 4 つは連続する比例数である：14142135、10000000、

7071068、5000000 

 

結論 
 

すでに述べた通り、学識ある人々は、対数がどれほど大きな利益をもたらすかを判断できるであろ

う。なぜなら、対数の加算は乗算に、減算は除算に、二等分は平方根の抽出に、三等分は立方根の抽出

に、その他の容易な方法で対数を使うことで、すべての複雑で重い計算作業を避けることができるから
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である。その具体例は、この前の書物で示した。次の書物では、これらの対数の特有かつ特別な用途

を、三角法と呼ばれる高貴な幾何学において論じるつもりである。 

 

前書の終わり 
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第２巻 三角法における驚異的な対数表のすぐれた利用について 

 

第１章 
 

幾何学とは、正しく測る術であるから、測定とは与えられた大きさを計ることである。大きさは（少

なくとも潜在的には）形を構成し、その形は三角形、または三角形に分割できる図形である。そして、

三角形に分割できる図形は三角形から成り立っており、それらの三角形およびその部分を測れば、その

図形全体と、そのあらゆる部分を測定することができる。したがって、三角形に関する学問から、すべ

ての幾何学的問題の計算による解法が依存していることは確かである。 

三角形は、直線的であるか、または球面である。 

 

直線の三角形について 
 

命題 1：直線（三角形）の三つの角の和は二つの直角に等しい。 

 

したがって、二つの角が与えられれば、それらの和を 180 度から引けば、第三の角が得られる。ま

た、ひとつの角を 180 度から引けば、残り二つの角の和が残る。直線三角形は直角三角形か、または鈍

角三角形である。直角三角形では、直角をはさむ二辺を『脚』と呼び、直角に対する辺を『斜辺』と呼

ぶ。 

 

命題２：直角三角形において、その脚（直角をはさむ辺）の対数は、それに対する（向かい合う）角の

対数と、斜辺の対数との和に等しい。 

現代表記：Log(脚)=Log(Sin(角))＋Log(斜辺) 

 

三角法の原理から明らかなように、直角三角形において、どちらか一方の脚と、その脚に対する角の

正弦との関係は、「脚:角の正弦＝斜辺:全正弦」という比例式になります。そして（第 1 巻第 2 章命題 5

によれば）、4 つの比例項が与えられたときは、第 2 項と第 3 項の対数の和は、第 1 項と第 4 項の対数

の和に等しい。ここで、第 4 項「全正弦」の対数は 0（つまり無）である（第 1 巻第 1 章の定義 6 の系

より）。したがって（上記のように）、脚の対数は、それに対する角（が作る弦＝正弦値）の対数と、斜

辺の対数との和に等しい。 

現代表記：脚:Sin(角)＝斜辺:Sin90° 

Log(脚)－Log(Sin(角))=Log(斜辺)－0 

Log(脚)=Log(Sin(角))＋Log(斜辺) 

 

系：したがって、直角三角形において、斜辺・直角をはさむ一方の辺・その辺が対する角のうち、任意

の二つが与えられれば、第三のものが求められ、そこからさらに直角三角形の他のすべての部分も

分かる。 
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というのも、これら 3 つの値は全正弦とともに、4 つの比例項を構成しているか

らである。したがって、そのうちのどれでも、比例式の第 4 項として置くことが

できるのは確かである。そして、それは第 1 巻第 5 章の第 3 命題によって求める

ことができる。 

直角が A にある直角三角形 ABC を例にとると、斜辺 BC=9385、直角をはさむ

一辺（脚）AB=9384 とする。求めるのは、鋭角 C と B の大きさである。そこで、

AB の対数 635870－000 から BC の対数 634799－000 を引く。残り 1071 が角 C

の正弦の対数である。この対数に対応する角は表によれば
3

89° 9
4

C


= である。こ

れに反対する補角として
1

0° 50
4

B


= となる。 

逆に、角 C と直角の一辺 AB が与えられ、斜辺 BC を求めたいときは、AB の対

数 635870－000 から角 C の対数 1071 を引く。すると 634799－000 となり、これ

は BC（=9385）の対数であり、求める斜辺である。 

第三に、もし斜辺 BC と角 C が与えられ、辺 AB を求めたいときは、BC の対数 6347990－000 に角

C の対数 1071 を加える。すると 635870－000 となり、これは 9384 の対数であり、求める辺 AB に対

応する。同様にして、角 B（角 C の余角）がすでに分かっている場合には、残りの脚 AC も求められ

る。そしてこのようにして、この直角三角形のすべての辺と角がわかる。 

 

命題 3：その直角辺に対する角の差（differential）と、もう一方の直角辺の対数の和に等しい。 

現代表記：Log(AB)=差(∠C)＋Log(AC) 

ネイピアの対数三角法の公式 

 

三角法の基本的な知識から次のことがわかっている：直角三角形において、 

「ある一方の直角辺の長さ」:「その辺に向かい合う角の正接」 

=「もう一方の直角辺の長さ」:「正弦の全体（すなわち 1 または 90°の正弦）」 

また、第 1 巻第 2 章第 5 命題によれば、これら 4 つの比例量の対数については、中項の対数（すなわ

ち、その角の差と、その角をはさむ直角辺の対数の和は、他方の項（その辺を対辺とする辺の対数と、

正弦全体の対数（=0））の和に等しい。したがって、正弦全体の対数が 0 であるため、ある直角辺の対

数は、その角の差と、もう一方の直角辺の対数の和に等しいという公式が得られる。 

 

系：直角三角形の二つの直角辺のうち、その一方の辺の長さと、その辺に向かい合う角の二つが与えら

れれば、この公式によってもう一方の辺が求められる。そして前に述べた方法によって、残りの直

角三角形のすべての要素（斜辺や他の角など）も求められる。 

 

これら 3 つの量（おそらく先に示された 3 つの値）と「全体の角度」は、4 つの比例項（4 つの等比

の項）を構成している。したがって、これらの中のどの量も、第 4 項として置くことができる。そし

て、2 巻 5 章第 3 問題の方法によって、求めることができる。 
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前の例の三角形 ABC について、A が直角である直角三角形において、与えられた二つの直角辺は

AB=9384、および AC=137 である。角 B を求めよ。AC の対数（42924534－000）から AB の対数

（635870－000）を引け。すると 42288664 が得られる。これは角 B に対応する差であり、これに対応

する角は 56 度 11 分である。これが求める角である。さて、もし直角辺 AC＝137 と、角 B＝50 度 11

分が与えられたならば角 B の差である 42288664 を、AC の対数 42924534－000 から引くと、辺 AB が

得られる。こうして得られる 635870－000 が、数値 9384 の対数であり、これが求める直角辺 AB であ

る。 

第三に、直角辺 AB＝9384 と角 B＝50°11′が与えられたとき、直角辺 AC を求めるには、直角辺 AB

の対数 635870－000 に、角 B の差 42288664 を加えよ。すると 42924534－000 が得られる。これは数

値 137 の対数であり、これが求める直角辺 AC である。斜辺 BC は、前の命題（計算方法）によって求

められる。また角 C も明らかである。なぜなら、角 C はすでに求めた角 B の余角だからである。した

がって、この手順と前述の手順によって、直角三角形の任意の一辺と他の任意の一つの部分（辺か角）

が与えられれば、その残りのすべての部分がわかる。 

よって、あなたはこれで直線辺から成る直角三角形の知識を完全に得た。続いて斜三角形（直角でな

い三角形）について述べる。 

 

直線三角形、特に斜三角形について 

第２章 
 

命題４：任意の三角形において、ある任意の角の対数と、それに隣接する辺の対数との和は、その辺の

対辺（反対側の辺）の対数と、その辺に対する角の対数との和に等しい。 

現代表記：log(sinA)＋logb=log(sinB)＋loga 

log(sinA)－loga=log(sinB)－logb 

正弦定理
Sin Sin SinA B C

a b c
= =  

 

すべての辺と、それに対する向かいの角の正弦との比は同じである。したがって、任意の角の正弦

と、その角に接する任意の辺との積は、その角に対向する辺と、その辺に対向する角の正弦との積に等

しい。よって（第 1 巻第 2 章第 5 命題により）、それらの対数の和は等しい（前述の通り）。 

 

系：したがって、同一形（相似形）の二つの角と、それらに対向する辺（弦）が与えられれば、三番目

の辺も、任意の第四の要素も求められ、それによって残りの三角形のすべての部分がわかる。 

 

この 4 つの比例関係にある量のうち、求めたいどれでも第 4 項に置くことができ、そしてそれは第 1

巻第 5 章第 3 問題によって求められる。 

傾斜三角形 ABC において、辺 AB=26302、辺 BC=57955、角度 C=26°が与えられている。角度 A

を求める。BC の対数 5454707－00 と、角度 C（26°）の対数 8246889 を加えると、13701596－00 に

なる。ここから、辺 AB の対数（13354921－00）を引くと、残りは 346675 という対数になる。これは
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約 75°の対数であり、もし角度 A が鋭角ならこの値にな

る。そうでなければ、もし鈍角ならば、角度は 105°にな

る（第 1 巻第 3 章の第 1・第 2 節による）。 

逆の場合、角 A がすでに 75°で、さらに角 C と辺 BC

が与えられているとする（上記のように）。そして辺 AB

を求める。辺 BC の対数に 5454707－00 を加え、角 C の

対数に 8246889 を加えると、前述のように 13701596－00

となる。そこから角 A の対数 346675 を差し引くと、辺

AB の対数 13354921－00 が得られ、その数値は 26302 である。角 A が 75°、角 C が 26°であること

がすでにわかっているならば、この三角形の角 B は 79°となる（この 1 章によると）。この角 B がわか

れば、先ほど角 C から求めた辺 AB に加えて、その対辺である辺 AC も求めることができる。辺 AC の

長さは 58892 である。したがって、この鈍角三角形の全ての部分（角と辺）が明らかになった。 

 

鈍角三角形において、角をはさむ二辺を「脚」と呼び、その対辺を「底辺」と呼ぶ。 

 

命題５：任意の斜三角形において、両脚の対数の和の対数を、次の量の和から引きなさい。そうする

と、その結果として、両反対角の半差に相当する対数が得られる。 

 

なぜなら、二辺の和が二辺の差に対する比は、その反対角の半和の正接が、その反対角の半差の正接

に対する比と等しいからである。したがって、これらは互いに比例しており（同類比であり）、（第 1 命

題 第 2 章 第 1 巻によって）それらの差、すなわち超過量は等しい。ゆえに必然的に（第 4 命題 第 2

章 第 1 巻によって）、前述の結論が導かれる。 

現代表記： ( ) ( ): tan : tan
2 2

B C B C
b c b c

+ −   
+ − =    

   
 

 

系：したがって、二辺とその間の角が与えられれば、この（公式）によって残りの反対角を求めること

ができ、さらに（先に述べた公式）によって残りの辺も求められる。 

 

すなわち、「二辺の和の対数」を、「二辺の差の対数」と「反対角の半和の差」を加えた和から引く

と、反対角の半差に関する差の対数が得られる。この半差を、その半和に加えれば大きい方の角が、引

けば小さい方の角が得られる。 

さて、先に取り上げた斜三角形 ABC を再び考える。二辺 AB=26302、BC=57955、および挟角

B=79°が与えられている。ここで、残りの角 A と C を求める。二辺 AB と BC の和は 84257 であり、

その対数は 24738819－0 である。また、それら二辺 AB と BC の差は 31653 であり、その対数は 

34529210－0 である。角 B が 79°と与えられているので、（本章第 1 命題によって）角 A と C の和は

101°であり、したがってその半和は 50°30′である。この半和に対応する差（対数差）は－1931766

である。この値を、二辺の差の対数 34529210－0 に加えると、32597444－0 となる。ここから二辺の

和の対数 24738819－0 を引くと、＋7858625 が得られる。これは 24°30′に対応する差であり、求め

る角 A と C の半差である。 
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定義：斜三角形において、真の基線は常に「余弦の和」である場合があり、そのときは「余弦の差」を

交互基線と呼ぶ。または、真の基線が「余弦の差」である場合もあり、そのときは「余弦の和」

を交互基線と呼ぶ。 

 

三角形 ABC において、小さい「カス」（casus＝特定の辺

や角に対応する計算値）は AD、大きいカスは DC である。

この二つのカスの和（AD＋DC＝AC）が真の基線である。

そして、この三角形において、小さいカス AD、またはそれ

と等しい DE を大きいカス DC から引くと、残りはカスの差

EC となり、これを交互基線と呼ぶ。逆に、三角形 EBC に

おいては、小さいカスは DE（これは DA に等しい）、大き

いカスは DC であり、カスの差 EC が真の基線である。そして、カスの和、すなわち AC を交互基線と

呼ぶ。 

注：「カス」とは、16・17 世紀のラテン語数学書で使われる三角法の中間計算値で、図では AD や DC

などの長さとして表す。 

 

命題６：斜三角形において、両脚の和と差の対数の和は、真の基線と交互基線の対数の和に等しい。 

現代表記：Log(AB＋BC)＋Log|AB－BC|=Log(AC)＋Log(EC) 

 

真の基線は脚の和に対して、脚の差が交互基線に対するように関係している。したがって（第 1 巻第

2 章命題 5 によって）、必然的に、基線の対数は脚の和と脚の差の対数に等しいと結論するのである。 

 

系：したがって、与えられた二辺（の長さ）からなる斜三角形から、それぞれの脚の一方と共に知られ

ている斜辺を持つ二つの直角三角形が作られ、そして（本書第 2 命題によって）その二つの直角三

角形から、斜三角形の他のすべての部分もまた知られるようになる。 

 

両脚の和の対数に、両脚の差の対数を加え、そこから真の基線の対数を引けば、交互基線の対数が得

られる。これは第 1 巻 第 2 章 命題 4、および第 5 章 問題 3 による。したがって、両基線の半和が

「大きいカス」であり、半差が「小さいカス」である。 

直角三角形 ADB については、すでに斜辺 AB ともう一方の脚 AD がわかっている。また、直角三角

形 BDC についても、斜辺 BC と脚 DC がわかっている。（本節第 2 命題によって）これらから、それぞ

れの直角三角形の角 A,B,C が求められる。したがって、これらの結果から、もとの斜三角形 ABC のす

べての部分も明らかになる。 

同じことは、もし三角形 EBC の辺が与えられ、他の部分を求める場合にも行える。なぜなら、その

脚と真の基線 EC から、交互基線 AC が求められるからである。そして、それらから両方のカスが得ら

れ、他の部分も先ほどと同様に求められる。 

 

結論 
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これで、すべての平面三角形に関する完全な理論を、あなたはすでに身につけたことになる。もし、

この方法が直線の変化する値の対数を求める点で、やや手間がかかるように見えたとしても——惑星の

運動を計算する場合（たとえば、軌道の離心率、近日点や遠日点の離角、周転円〔エピサイクル〕の直

径などの量）は、一度正確に求めて記録したそれらの対数は、将来にわたってまったく変わらない。し

たがって、以後は何の変更もなく、常に用いることができ、計算は驚くほど容易かつ確実になる。 

ここまでで平面三角形は終わり、これからは球面三角形に入る。球面三角形は一般には非常に難しい

ものとされているが、我々の対数を用いれば、最も易しいものとなる。 
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球面三角形について 

第 3 章 
 

命題 

球面三角形において、すべての角の中で直角（90°）に最も近い角と、その角に対向する辺とが、同じ

種別（両方とも 90°未満か、両方とも 90°超か）であるのかどうかは確定できない。 

1. （その角と対辺が）異なる種別であるのか、同じ種別であるのかは、計算や仮定によって示されな

い限り分からない。 

2. 二つの鈍角（または鋭角）のうちのいずれも、それに対向する辺と同じ種別である。したがって、

一方の種別が分かれば、他方の種別も自ずと分かる。 

3. もし三角形のある角が、その対辺よりも直角（90°）に近い場合、その角に接する二辺は同じ種別

であり、残りの一辺は 90°未満である。 

4. もし三角形のある辺が、それに対向する角よりも直角（90°）に近い場合、その辺に隣接する二つ

の角は同じ種別であり、残りの一つの角は 90°より大きい。 

5. 球面三角形は、四分形であるか、そうでないかのどちらかである。 

6. 四分形とは、1 つの辺または 1 つの角が直角（90°）に等しい三角形のことである。 

したがって、直角三角形と同じくらい容易に、非直角の四分形三角形についても知識を得ることが

できることを、ここで示す。 

7. 四分形三角形は、複合か単純のいずれかである。 

8. 複合四分形は、三直角三角形か二直角三角形のどちらかである。 

9. 三直角三角形とは、三つの辺と三つの角のすべてが直角に等しい三角形である。 

10. したがって、互いに対向しない三つの部分がそれぞれ直角に等しい三角形は、三直角三角形であ

る。 

11. 二直角三角形とは、二つの角と、それぞれに対向する辺が、それぞれ直角に等しい三角形である。 

12. すべての二直角三角形において、鋭角（または鈍角）は、それに対向する辺と等しい大きさであ

る。 

13. ある部分（辺または角）が直角に等しく、かつ、ある斜角（直角でない角）がそれに対向する辺と

等しい三角形は、二直角三角形である。 

14. どの二つの部分でも、それぞれが直角に等しく、残りの一つが直角と等しくない三角形は、二直角

三角形である。 

15. その他の四分形（三角形）は、単純四分形と呼ばれる。 
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単純な四分形（三角形）について 

第 4 章 
 

系１：単純四分形三角形とは、ただ 1 つの部分（辺または角）が直角（90°＝四分円）に等しく、その

他の残り 5 つの部分は直角ではない三角形である。 

 

系２：この 5 つの直角でない部分のうち、直角の角、またはその直角辺から位置的に離れている 3 つ

を、それぞれ補角（余角）に変換する。そして元の順序を保ったまま、この 5 つ全てを円形また

は五辺形的な配置に並べ、それらを「円形部分」と呼ぶ。 

 

まず、三角形 BPS が点 B において直角であるとする。この三角形の 5 つの斜の

部分（＝直角ではない部分）は次の通りである。BP は直角に接する辺の一つ（隣

辺）である。P はもう一つの斜角である。PS は直角に対向する辺（＝斜辺）であ

る。S は残りの斜角である。SB はもう一方の直角に接する辺である。これらの代

わりに、計算を容易にするため次の量を採用する。そのままの辺 BP。角 P の余角

（90°－P）。辺 PS（斜辺）の余角（90°－PS）。角 S の余角（90°－S）。そして

辺 SB そのまま。これら 5 つの部分を、自然な順序（位置関係）を保ったまま円周

上に並べ、端から順に置いていく。こうして配置した 5 つを「円形部分」と呼ぶ。 

同様にして、第 2 の場合として、単純な四分球三角形で、直角ではないもの SPZ を考える。この三

角形は、東の地平線上の太陽の中心、天の極（P）、天頂（Z）を結んでできたものであ

り、その一辺 ZS が四分円（90°の弧）になっている。この三角形の「四分円でない」

5 つの部分は、もとの名称のままである。これら（5 つの部分）について、計算を容易

にするために、次のように置き換えることにする。 

・角 Z（PZS）—太陽の位置を北から測った弧（太陽の赤緯円上での弧長） 

・PZ の余角—極の高度（＝観測地の緯度） 

・角 P（ZPS）の余角—昇交差、すなわち日の出または日の入り時刻が真昼（第 6 時）

からどれだけずれるかの時間差 

・辺 PS の余角—太陽の赤緯 

・角 S（PSZ）—太陽の位置角（天の極と天頂に対する太陽の位置の角度） 

この五つの部分も、円形配置で、周辺（辺）から順に並べ、これを「円形部分」と呼ぶ。上記の直角三

角形 BPS においても、もし P を天の極、S を太陽、B を北の地平点（北方の方位点）としたなら、これ

以外に円形部分はない。 

すなわち： 

・BP：極の高度 

・補角の P：昇差 

・補角の PS：太陽の赤緯 

・補角の S：太陽の位置角 

・BS：太陽の区域 
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これらは、先に述べた円形部分とまったく同じであり、ただ配置の向きが、あちら（前の例）では右回

り、こちらでは左回りに置かれているだけである。この方法は、すべての四分体において、直角の場合

でも非直角の場合でも同じである。 

 

系３：したがって、多くの三角形は、その自然な構成部分においては互いに一致しないが、これらの

「円形部分」においては完全に一致し、われわれの円形部分による方法で解くことができるので

ある。 

 

これは、上に示した 2 つの三角形 BPS と PZS をつなぎ合わせた例で十分に明らかである。これらで

は、（この三角形における PS と BS、そして別の三角形における PS と PZS を除けば）自然な部分はす

べて完全に異なっている。しかし、円形部分は（前述の通り）すべて一致している。 

 

系４：この円形部分の一様性は、球面上で 5 つの大円によって作られる長方形（球面上の直角四辺形）

において、もっともはっきりと見て取れる。5 つの大円は、第 1 の大円が第 2 の大円と交わり、

第 2 が第 3 と、第 3 が第 4 と、第 4 が第 5 と交わり、最後に第 5 が第 1 と直角に交わる。そして

残りの交点はすべて直角ではなく、斜めの角となる 

 

例えば、 

・ある地点（観測地点）の子午線（DB）が地平線（BE）と交わる点

を B とする。 

・地平線（BE）は、太陽を極として描かれる大円（EC、つまり黄緯

に沿った円）と点 E で交わる。 

・その太陽を極とする円（EC）は、太陽の子午線（CF）と点 C で交

わる。 

・太陽の子午線（CF）は天の赤道（FD）と点 F で交わる。 

・赤道（FD）は再び観測地点の子午線（DB）と点 D で交わる。 

そして、これら B・E・C・F・D の 5 つの交点は、いずれも直角（直交）で交わる。それ以外の交点

（Z・P・S・O・Q）はすべて斜交（直角ではない）で交わる。このようにして、次の 5 つの直角球面

三角形ができる：PBS,SFO,OEQ,QDZ,ZCP。それぞれの三角形では、自然の辺や角（距離や角度）は

異なり変化するが、円形の 5 つの部分（＝前に説明した共通の球面要素）はすべて同じで、違いはな

い。 

 

系５：円形部分の同一性は、直角でない四分球三角形の場合にも見られる。これは、球面上に 5 つの点

をとり、 

・第 1 の点は第 2 の点から 四分円（90°）離れ 

・第 2 の点は第 3 の点から四分円離れ 

・第 3 の点は第 4 の点から四分円離れ 

・第 4 の点は第 5 の点から四分円離れ 

・第 5 の点は第 1 の点からも四分円離れている 
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という条件で構成される図形の場合である。ただし、この 5 点間の他の距離（隣接しない点どう

しの距離）は、必ずしも四分円ではない（＝90°とは限らない）。 

 

前の図と同じように、PQ、QS、SZ、ZO、OP の距離は、いずれも四分円（90°）で等しい。しかし

一方で、PZ、ZQ、QO、OS、SP の距離は、四分円（90°）ではない。こうした距離関係から、次の 5

つの直角でない四分球三角形 PZQ、ZQO、QOS、OSP、SPZ ができる。これらの三角形では、辺や角

の実際の大きさはそれぞれ異なるが、円形の部分は、前に述べたものと同じで、変わらずに保たれる。

すなわち、共通する円形部分とは次の 5 つである：極の高度、昇交差（日の出・日の入りの時刻差）、

太陽の赤緯、太陽の位置角、太陽の方位、これらは、前に述べたすべての三角形に同じように当てはま

るだけでなく、この 5 つの三角形だけでなく、これら 10 本の弧を完全な大円まで延長して作られる、

他の交点から生じるすべての三角形にも共通する。ただし、それらの三角形は非常に多く、しかも配置

が複雑になるため、ここでは省略する。この簡略な説明だけで十分に示したように、長さや角度やそれ

らに関する諸規則のあらゆる混乱は、この少数の円形部分と、ただ一つの共通規則によって避けられ、

解消される。 

 

系６：円形部分の 5 つのうち、常に 3 つが問題に関わり、そのうち 2 つが与えられ、残りの 1 つが求め

られる。 

 

系７：そして、この 3 つのうち 1 つは中間にあり、2 つは両端にある。すなわち、この中間の部分は

（他の 2 つに）隣接しているか、または向かい合っている。 

 

例えば、問題に挙げられた 3 つの部分が、太陽の方位、極の高度、および赤経差であるとしよう。こ

のうち、極の高度は中間の部分と呼ばれ、残りの 2 つはこれに隣接している、または取り囲んでいるも

の、すなわち両端部と呼ばれる。しかし、もし問題に関わる 3 つの部分が、太陽の赤緯、極の高度、お

よび太陽位置角であれば、（前と同様に）極の高度は中間部と呼ばれるが、太陽の赤緯と太陽位置角は

中間部から離れている、すなわちこれに対向している両端部と呼ばれる。残りの 5 つの部分についても

同じ理屈である。 

 

系８：中間項の対数は、隣接する両端の差（の対数）に等しい。あるいは、反対側の両端の逆対数に等

しい。 

 

この定理は、四分球三角形のうち最初の BPS 直角三角形の五つの円形部分から作ることのできる、

すべての三部分組（すなわち三項組）についての帰納法によって証明される。そしてそれらが問題とな

り得る。これに対し、後の PZS 直角三角形の三部分組については省略する。なぜなら、（前提として述

べた 18・19・20 の命題によれば）そのすべての円形部分は、最初の三角形のものとまったく同じ大き

さだからである。したがって、BPS 直角三角形の 5 つの円形部分、BS：太陽の位置する方位、BSP の

余角：太陽の位置角、SP の余弦角：太陽の赤緯 、SPB の余角：昇交差、PB：極の高度,について、 
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「両端の隣接項に関する」場合に問題となる三要素の組み合わせは次の通りである。第 1 組:BS,補角

BSP,補角 SP、第 2 組:補角 BSP,補角 SP,補角 SPB、第 3 組:補角 SP,補角 SPB,PB、第 4 組:補角

SPB,PB,BS、第 5 組:PB,BS,補角 BSP 

しかし、これらすべての三つ組において、一方の「端の要素（極端項）」の正接は、中間項の直角の

正弦に対して、ちょうど全正弦が他方の端の要素の正接に対するのと同じ比を成す。したがって、我々

の証明（第 1 巻第 2 章命題 5）によれば、中間項の対数（第 1 巻 第 1 章の定義の系 6 により）は、両

端項の正接の対数と等しい。しかし、これら両端項の正接の対数は、それぞれの差である（第 1 巻第 3

章第 22 節および第 25 節より）。したがって、中間項そのものの対数は、両端項に対応する差に等し

い。これは、先にこの定理の前半部分で主張したとおりである。続いて、この定理の後半部分の確認に

移る。 

現代表記：tan(一方の端):sin(中間)=sin(90°):tan(他方の端) 

したがって、この同じ五つの円形部分のうち、問題となる三つ（＝二つの端部と一つの中間部分）が

組み合わされる場合は、次のいずれかである。PB・補角 BSP・補角 SPB、BS・補角 SP・PB、補角

BSP・補角 SPB・BS、補角 SP・PB・補角 BSP、補角 SPB・BS・補角 SP、である。 

しかし、これらすべての三つ組（五つのケース）においては、一方の端の補角の正弦は、中間の正弦

に対して、全正弦がもう一方の端の補角の正弦に対するのと同じ比にある。これはすでにレギオモンタ

ヌス(Regiomontano)、コペルニクス(Copernico)、ランスベルギウス(Lansbergio)、ピティスクス

(Pitifco)その他の学者たちによって十分に証明されているので、この簡略な要約の中で改めて繰り返す

必要はない。したがって、我々自身の証明（第 1 巻第 2 章命題 5）によれば、これら両端の補角の対数

は、中間の対数に等しい。すなわち、中間そのものの対数に等しい。ところで、これらの対立する端の

補角の対数は、それら自体の部分の逆対数である（第 1 巻第 3 章第 13 節と第 16 節の定義による）。し

たがって、この場合には、中間部分の対数は、その対立する両端の逆対数に等しい。これは定理の後半

部分が主張するところである。以上によって定理は完全に確立された。この証明は、考えられるすべて

のケースを一つひとつ列挙して示したもののほかに、先の第 19 および第 20 の（定理や命題）からも、

同じ定理を明瞭に理解することができる。というのも、それらの図式の中では、円形部分の対応関係が

相似の比を示しているからである。したがって、ある一つの中間部分とそれに隣接する、あるいは対立

する端部分について真であると述べられることは、残りの四つの中間部分についても、それぞれの隣接

端または対立端に関して否定しえないのである。 

 

総合的な結論 
 

系９：したがって、単純な四分三角形においては、いかなる二つの部分が与えられても、任意の第三の

部分が求められる。常に次のいずれかの形で計算される。すなわち、中間部分を求める場合は、

隣接する両端の差数を加えてその対数を得る。また、両端の一方を求める場合は、既知の中間部

分の対数から他方の端の差数を引いて、その差数を得る（これは前の定理の直角三角形の五つの

三重関係と同数の非直角三角形の場合に当てはまる）。さらに別の場合には、中間部分を求める

とき、与えられた反対側の両端の逆対数を加えることでその対数が得られる。最後に、反対側の

両端の一方を求める場合には、既知の中間部分の対数から他方の端の逆対数を引くことによっ

て、その逆対数を得る。それは、直前の定理に示された直角三角形の後半の五つの場合と、同数
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の非直角三角形の場合とにおいても同様である。さて、これまでに求められた対数・逆対数・差

数のそれぞれには、必ず異なる種類の二つの弧が対応している。したがって、求める弧がどちら

の種類に属するかは、この書の第 2・第 3・第 4 節、あるいは与えられた仮定によって判別さ

れ、その結果、真の弧が知られることになる。 

 

系７の前例と同様に、問題に関わる三つの円形部分は、太陽の方位・極の高度・昇交差の差である。

すなわち、直角三角形 BPS では BS（太陽の方位）、PB（極の高度）、SPB の余角（昇交差の差）、ある

いは非直角の四分三角形 PZS では PZS（太陽の方位）、PZ の余角（極の高度）、SPZ の余角（昇交差の

差）である。これら三つのうち、両端の（＝中間に隣接する部分）が与えられている。すなわち、太陽

の方位が 70°、昇交差の差が 16°24′27″である。そして求めるべきは、中間部分 PB または PZ の

余角、すなわち極の高度である。したがって、70 度の差数－10106827 を、16°24′27″の差数

12226180 に加えると、2119353 が得られる。これは 54 度の対数であり、求める極の高度に当たる。 

 

注意 
 

この方法で極の高度が求められるだけでなく、第２に極の高度と太陽の位置角から太陽の方位を、第

３に太陽の方位と赤緯から太陽の位置角を、第４に太陽の位置角と昇交差の差から赤緯を、第５に赤緯

と極の高度から昇交差の差を、それぞれ求めることができる。 

 

第２の例 
 

昇る太陽の方位 BS（すなわち角 PZS）が 70 度、また極の高度が 54 度（これは弧 PB、あるいは PZ

の余弧にあたる）であるとする。ここで求めるべきは昇交差の差である。すなわち、角 SPB の余角、

または角 SPZ の余角である。そして、ここでも同じく両端の部分が中間の部分を囲んでいるので、太陽

の方位 70°に対応する差（-10106827）を、極の高度 54°の対数（2119353）から引けばよい。これに

より 12226180 が得られる。それは約 16°24′24″にあたり、これが求める昇交差の差の弧である。 

 

注意 
 

この例にならって次のことが得られる。 

第２に、与えられた昇交差の差と極の高度から、太陽の赤緯が求められる。 

第 3 に、太陽の赤緯と昇交差の差から、太陽の位置角が求められる。 

第 4 に、太陽の位置角と赤緯から、太陽の方位が求められる。 

第 5 に、太陽の方位と太陽の位置角から極の高度が求められる。また逆に（すなわち、極の高度ともう

一つから太陽の方位や位置角も求められる）。 

第 6 に、与えられた太陽の赤緯と位置角から昇交差の差が求められる。 

第 7 に、太陽の位置角と方位から太陽の赤緯が求められる。 

第 8 に、太陽の方位と極の高度から太陽の位置角が求められる。 
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第 9 に、極の高度と昇交差の差から太陽の方位が求められる。 

第 10 に、与えられた昇交差の差と太陽の赤緯から極の高度が求められる。 

 

第３の例 
 

同じ第 7 の場合の後の例では、問題に関わる 3 つの円形部分として、太陽の赤緯・極の高度・太陽の

位置角が得られる。これらは直角三角形 BPS においては、PS の余弧 BP および角 BSP の余角に対応

し、また非直角の四分球三角形 PZS においては、PS の余弧 ZP の余弧・および角 ZSP に対応する。こ

の三つの部分のうち、与えられているのは互いに対する両端、すなわち太陽の赤緯（PS の余弧

=11°35′51″）と太陽の位置角（角 BSP の余角、または ZSP=約 34°19′21″）である。求めるの

は中間の部分 BP（すなわち ZP の余弧、極の高度）である。そこで、赤緯 11°35′51″の逆対数

206271 を、位置角 34°19′21″の逆対数 1913082 に加えると、2119353 が得られる。これは 54°に

対応する対数であり、これが求める極の高度である。 

 

注意 
 

すでにこの方法で求めた極の高度に加えて、同じやり方で次のこともできる。 

第 2 に、与えられた太陽の赤緯と昇交差の差から太陽の方位を求めること。 

第 3 に、昇交差の差と極の高度から太陽の位置角を求めること。 

第 4 に、極の高度と太陽の方位から太陽の赤緯を求めること。 

第 5 に、太陽の方位と位置角から昇交差の差を求めること。 

 

第４の例 
 

与えられているのは、太陽の赤緯（PS の余弧）=11°35′51″と、極の高度 BP（または PZ の余

弧）=54°である。求めるのは太陽の位置角（角 BSP の余角、すなわち角 PSZ）である。ここでも両端

の部分が中間の部分に対立しているので、赤緯 11°35′51″の逆対数（206271）を、極の高度 54°の

対数（2119353）から引けばよい。そうすると 1913082 が残り、これはおよそ 34°19′21″の逆対数

であり、これが求める太陽の位置角である。 

 

注意 
 

すでにこの最初の方法で太陽の位置角を求めたが、同じ方法で第 2 に、与えられた昇交差の差と太陽

の方位から太陽の赤緯を得ることができる。 

第 3 に、極の高度と太陽の位置角が与えられれば、昇交差の差を求めることができる。 

第 4 に、太陽の方位とその赤緯が与えられれば、極の高度を求めることができる。 

第 5 に、太陽の位置角と昇交差の差から太陽の方位を得ることができる。 
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第 6 に（逆の順序で）、太陽の方位と昇交差の差が与えられれば、太陽の位置角を求めることができ

る。 

第 7 に、太陽の位置角と極の高度から太陽の赤緯を得ることができる。 

第 8 に、太陽の赤緯とその方位から昇交差の差を求めることができる。 

第 9 に、与えられた昇交差の差と太陽の位置角から極の高度を得ることができる。 

第 10 に、極の高度と太陽の赤緯が与えられれば、太陽の方位を求めることができる。 

この 4 つの例にならって、円形部分に関する 30 通りのさまざまな問題が解ける。すなわち、四分球

直角三角形における 30 の問題と、非直角四分三角形における同じく 30 の問題が、この定理の助けによ

って、ただ 1 回の加算または減算だけで解かれるのである。なお、この定理の後半部分、すなわち弧の

種類について理解するためには、以下に続く第 3・第 4・第 5・第 6 の例を見るとよい。 

 

直角を含まない混合四分球三角形について 

第５章 
 

四分三角形についてはここまで。続いて、四分三角形でない、つまり直角を含まない球面三角形の理

論。 

１ 辺にも角にも直角を含まない球面三角形を非四分三角形という。 

２ 非四分三角形は、頂点から底辺（必要なら延長した底辺）に垂線または四分円弧を下ろすことで、

二つの四分三角形に分割できる。 

３ 垂線は、底辺の両端角が同種（両方とも鋭角または両方とも鈍角）なら三角形の内部に落ち、種類

が異なれば外部に落ちる。そして逆の場合もまた然りである。 

４ 四分円弧は、両側辺が同種のとき三角形の外に落ち、異種のときは内に落ちる。そして逆の場合も

また然りである。 

５ 混合四分球三角形は原則「任意の 3 要素から他の 3 要素を決定できる」が、例外的な場合には追加

情報（その要素が鋭角か鈍角かなどの種別）も必要になる。 

（この場合の例は、第 4 および第 6 の例を参照） 

６ 与えられた三要素は、混合型か純粋型のいずれかである。 

７ 混合型とは、三つのうち一つが他の二つとは異なる種類である場合をいう。 

（たとえば、二辺と一つの角が与えられる場合、あるいは二角と一つの辺が与えられる場合のように） 

８ 与えられた三要素が混合型の場合、もし与えられた辺の端点から、その辺の反対端に与えられた角

を対するように、底辺に垂線または直角弧を下ろすなら、その混合四分三角形は二つの四分三角形に

分割され、（第 4 章第 9 節の規則によって）解けるものに帰着する。 

したがって混合四分三角形の他の部分も容易に求められる。なぜなら、それらはこれら二つの四分

三角形の部分や他の部分と共通しているからである。ただし、そのためにはあらかじめ第 3 章第 2・

3・4 節によって、あるいは仮定として各部分の種類（鋭角か鈍角かなど）を知っておく必要がある。 

 

二辺とその間にある角が与えられている場合の例 
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用例と練習のために、混合四分球面三角形を天球の表面に描くとしよう。 

その三角形は極(P)、天頂(Z)、太陽(S)を結ぶものである。その六つ

の部分のうち、まず辺 PZ は極と天頂との間の距離であり、すなわち極

の高度の余角である。辺 ZS は天頂と太陽との距離で、これは太陽高度

の余角である。辺 PS は極と太陽との距離で、これは太陽赤緯の余角で

ある。 

三角形 PZS の 3 角は次の天文量に対応する。 

１ ∠ZPS（極の角）=太陽の時角（赤道における時間の指標） 

２ ∠PZS（天頂の角）=太陽の方位角（北から測った方位） 

３ ∠PSZ（太陽の角）=太陽の位置角（太陽が極と天頂に対して

どの位置にあるかを表す角） 

この六つの部分のうち、任意の三つが与えられるとする。たとえ

ば、時間角 ZPS=42°29′59″（これは午後 2 時 46 分 59 秒に相

当する）と、辺 PZ=34°（すなわち極と天頂の間隔＝極の高度の

余角）、さらに辺 PS=69°（すなわち太陽と極の間隔＝太陽赤緯の余角）が与えられている場合であ

る。これら（三つの与えられた要素）から残りの三つの部分を求めるために、点 Z（天頂）から、与え

られた辺 PZ の端点に向かって垂線 ZM を下ろすか、あるいは好みによっては、与えられた角 ZPS を弧

ZH（直角弧）で支え、非直角三角形 PZS を直角二つの三角形に還元する。すなわち、第一の図におけ

る角 M を共有する二つの直角三角形 PMZ と ZMS に分割するか、または第二の図における辺 ZH 上に

直角を作り、そこから生じる二つの直角三角形 ZHP と ZHS に分割する。これらの直角三角形のすべて

の部分は、本書第 4 章第 9 節の規則によって求められる。すなわち、与えられた条件 PZ=34°および

∠ZPM（すなわち∠ZPS=42°29′59″）から、まず垂線 ZM=22°11′47″、∠

PZM=52°6′38″、辺 PM=26°26′29″を求める。この PM を∠ZPS=69° から引くと、残りは

MS=42°33′31″となる。この MS とすでに知られている垂線 ZM を用いれば、第 4 章第 9 節の定理

により、∠MSZ（すなわち求める∠PSZ）＝31°06′05″、さらに辺 SZ=47°が得られる。また∠

MZS=67°38′11″が求まり、これを∠PZM=52°46′38″に加えると、最後に求める∠

PZS=120°24′49″が得られる。このようにして、最初の図における垂線 ZM の役割によって、あな

たは三つの求める部分を得た。同じものをまた、第二の図における四分円 ZH の役割によっても見いだ

すことができる。なぜなら、前と同じく与えられた PZ=34°、および∠ZPS（すなわち

∠ZPH=42°29′59″）から、同じ第 4 章第 9 節の方法によって、∠ZHP=22°11′47″、

∠PZH=142°46′38″、そして辺 PH=116°26′29″を得る。ここから辺 PS=69°を引くと残りは

SH=47°26′29″となる。この SH とすでに得られた角 22°11′47″）とを用いれば、第 4 章第 9 節

の定理により、∠SZ=148°53′55″が得られる。その余角、すなわち半円との差は 31°06′05″であ

り、これが求める∠PSZ である。さらに、辺 SZ=47°が得られる。最後に、∠HZS=22°21′49″を求

め、これを∠HZP=142°46′38″から引けば、残りの求める∠PZS=120°24′49″が得られる。これ

はまったく前と同じ結果である。 

 

注意 
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たとえば、極の高度、時刻、太陽の赤緯が与えられれば、太陽の方位、太陽の高度、太陽の位置角が

得られる。また、太陽の赤緯、太陽の位置角、太陽の高度が与えられれば、太陽の方位、極の高度）、

時刻または時角が得られる。さらに、太陽の高度、太陽の方位、極の高度が与えられれば、時刻、太陽

の赤緯、太陽の位置角が得られる。 

 

第２の例、すなわち二つの角とその間に挟まれた辺が与えられてい

る場合 
 

前の図において、与えられている角は、時角∠ZPS=42°29′59″と太陽の方位角

∠PZS=120°24′49″、さらに極の高度の余角（すなわち挟角の辺 PZ=34°）である。この与件か

ら、残りの三つの部分を求めることになる。すなわち、まず（前に述べたように）

ZM=22°11′47″、PM=26°26′29″、∠PZM=52°46′38″が得られている。これを

∠PZS=120°24′49″から引けば、∠MZS=67°38′11″が残る。この角とすでに知られている ZM

とから、求める辺 ZS=47°が、さらに∠ZSM、すなわち求める∠ZSP=31°6′5″が導かれる。また

MS=42°33′31″が得られ、これを PM に加えると、残りの求める辺 PS=69°となる。この結果は、

第１の図における垂線によって得られるのであり、また同様に、第２の図の四分円を用いることによっ

ても同じ結果が得られる。実際、第 4 章第 9 項によれば、与えられた∠PHZ と∠PZH から、さらにそ

こから与えられている∠PZS を引くと∠SZH が残り、この角とすでに知られている∠PHZ とによっ

て、他のすべての部分が導き出される。 

 

注意 
 

この例にならうことで、この三角形やその他あらゆる三角形について９通りの異なる問題が解かれ

る。というのは、（すでに示したように）時刻・極の高度・太陽の方位が与えられていれば、まず太陽

の赤緯、次に太陽の位置角、さらに太陽の高度を求めることができるからである。また、時刻・太陽の

赤緯・太陽の位置角が与えられていれば、太陽の高度・太陽の方位・極の高度が得られる。さらに、太

陽の位置角・太陽の高度・太陽の方位が与えられていれば、極の高度・時刻・太陽の赤緯が求められ

る。 

 

第３の例、二辺が与えられていて、そのうち直角に近い方の辺が与

えられた角を対辺としている場合。 
 

前の図において、辺 PZ=34°と、それより直角に近い辺 ZS=47°、およびその辺が対する

∠ZPS=42°29′59″が与えられているとする。このとき、第 4 章第 9 節の規則に従って、次が求めら

れる：ZM=22°11′47″、∠PZM=52°46′38″、PM=26°26′29″。同じ方法で ZSM、すなわち

求める∠ZSP が得られる。そして第 3 章第 2 命題によって確かに、これは直角より小さいことが分か

る。したがって、その値は 31°6′5″であり、148°53′55″ではない。また、∠MZS=67°38′11″

を得る。これに∠PZM=52°46′38″を加えると、残りの求める∠PZS=120°24′46″となる。さら
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に、MS=42°33′31″を得る。これに PM=26°26′29″を加えると、求める辺 PS=69 となる。同様

に、望むなら、第 2 図の四分円 ZH を用いても、同じ結果を得ることができる。 

 

第４の例、二辺が与えられていて、そのうち直角から遠い方の辺が

与えられた角を対辺としており、直角に近い方の辺は、角の大きさ

ではなく種類だけ（鋭角か鈍角かだけ）が与えられた角を対辺とし

ている場合。 
 

与えられたものは辺 ZS=47°、そして直角により小さい方の辺 PZ=34°、さらにこの辺が対する

∠ZSP=31°6′5″。また辺 ZS が対する角（すなわち∠SPZ）は、90°未満の角であると仮定する。

そこで、点 Z から底辺 PS に垂線 ZM を下ろす（前と同じ方法）。

あるいは、ここでは別のやり方として、点 Z から四分円 ZI を引

き、与えられた∠ZSP を扱う。第 9 節第 4 章の規則によって、残

りの部分を求める。すなわち（練習と方法の多様性のために）、こ

の図の四分円 ZI から∠ZIS=22°11′47″、

∠IZS=157°38′11″、∠S=132°33′31″を得る。同様の方法

で∠IPZ も求まり、したがって∠SPZ= 42°29′59″を得る。仮定によって、角が直角より小さいこと

が明示的に与えられている。そうでなければ、その角の“種類”（90°未満か 90°超か）が分からず（本

書第 3 章第 1 節および本章第 5 節の規則によれば）不確定である。実際、別の可能性として

137°30′1″という答えにもなり得る。また、∠IZP=37°13′22″ が得られる。これを∠IZS.= 

157°38′11″から引けば、残りの求める∠PZS=120°24′49″が得られる。さらに辺

IP=63°33′31″が得られる。これを IS=132°33′31″から引けば、残りの求める辺 PS=69°が得ら

れる。第 1 の図における垂線 ZM を用い、その部分を対数計算の方法で求めれば、同じ結果に到達する

ことができる。 

 

注意 
 

前の第 3 の例題とこの第 4 の例題にならって計算すれば、18 種類の異なる三角形の問題を解くこと

ができる。たとえば（第 3 の例のように）、極の高度・太陽の高度・時刻が与えられていれば、太陽の

方位・太陽の位置角・太陽の赤緯を求めることができる。また（この第 4 の例題のように）、極の高

度・太陽の高度・太陽の位置角が与えられれば、太陽の方位・時刻・太陽の赤緯が求められる。太陽の

高度・赤緯・時刻が与えられれば、太陽の位置角・方位・極の高度が求められる。太陽の高度・赤緯・

方位が与えられれば、太陽の位置角・時刻・極の高度が求められる。太陽の赤緯・極の高度・太陽の位

置角が与えられれば、太陽の方位・太陽の高度・時刻が求められる。太陽の赤緯・極の高度・太陽の方

位が与えられれば、時刻・太陽の位置角・太陽の高度が得られる。 

 

第 5 の例。二つの与えられた角があり、そのうち直角により近い方

の角を、与えられた辺が対辺として持つ場合。 
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第 1 図の球面三角形 PZS において、∠PST=31°6′5″、直角に近い角∠SPZ= 42°29′59″、およ

びその角に対する辺 ZS=47°が与えられている。これらの与えられた条件から（第 4 章第 9 節の定理に

より）、垂線 ZM が 22°11′47″と求められる。また、直角三角形 SZM の残りの部分も求められ、す

なわち∠MZS=67°38′11″、辺 MS=42°33′31″である。 

同様にして、この垂線と与えられた角 ZPS すなわち ZPM によって、直角三角形 ZMP のすべての部分

が求められる。すなわち、まず求める辺 PZ が得られる。これが直角より小さい（第 3 章第 2 定理によ

って確実にわかる）ので、146°ではなく 34°である。次に∠PZM=52°46′38″が得られる。これに

∠SZM= 67°38′11″を加えると、求める角∠PZS=120°24′49″が得られる。最後に辺

PM=26°26′29″が得られる。これに MS=42°33′31″を加えると、残りの求める辺 PS=69°が得

られる。これら同じ部分も、もし好むなら、前の図に出てくる二つの直角三角形 ZIS および ZIP から別

の方法で求めることもできる。 

 

第６の例。二つの与えられた角のうち、直角から遠い方の角を対辺

として持つ辺は、その大きさが与えられている。しかし直角に近い

方の角を対辺として持つ辺は、その“種類（性質）”だけが与えら

れている場合。 
 

第 1 図の三角形 PZS において、∠ZPS=42°29′59″、および直角より遠い角∠ZSP=31°6′5″が

与えられている。また、その角 ZSP を対辺として持つ辺 PZ=34°が与えられている。さらに、角 ZPS

を対辺とする辺 ZS は、種別として（すなわち性質として）直角より小さい辺であることが与えられて

いる。これらの与えられた条件から、垂線 ZM=22°11′47″が求められる。また、直角三角形 PZM

の残りの部分、すなわち∠PZM=52°46′38″と辺 PM=26°26′29″が得られる。同様にして、この

垂線 ZM と与えられた角 ZSM（すなわち∠ZSP=31°6′5″）とから、直角三角形 ZMS のすべての部

分が求められる。すなわち、まず望んでいた辺 ZS=47 が得られる。これは、仮定において明示的に

「直角より小さい」と定められているからである。そうでなければ、この辺は 133°であった可能性も

ある。というのも（第 3 章第 1 節および本章第 5 節によれば）、辺の“種別（＝直角より小さいか大きい

か）”が明示的に与えられなければ、その決定は不確定だからである。次に、∠MZS=67°38′11″に

∠MZP=52°46′38″を加えると、求める角∠PZS=120°24′49″となる。最後に、辺

SM=42°33′31″が得られる。これに辺 PM=26°26′29″を加えると、求める底辺 PS=69°とな

る。これら同じ部分は、第 2 図の直角三角形 PHZ と SHZ を用いても、非常に容易に求めることができ

る。 

 

注意 
 

前の第 5 例およびこの第 6 例の手法によって、本例や任意の三角形に関する 18 種類の異なる問題が

解ける。たとえば（第 5 例のように）、太陽の位置角・時刻・太陽の高度が与えられると、極の高度・

太陽の方位・太陽の赤緯が求められる。また（この第 6 例のように）、時刻・太陽の位置角・極の高度

が与えられると、太陽の高度・太陽の方位・太陽の赤緯が求められる。時刻・太陽の方位・太陽の高度
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が与えられれば、太陽の赤緯・太陽の位置角・極の高度が得られる。時刻・太陽の方位・太陽の赤緯が

与えられれば、太陽の高度・太陽の位置角・極の高度が得られる。太陽の方位・位置角・赤緯が与えら

れれば、極の高度・時刻・太陽の高度が得られる。太陽の方位・太陽の位置角・極の高度が与えられれ

ば、太陽の赤緯・時刻・太陽の高度が求められる。そしてこのただ一つの表（計算法・規則）を用いる

方法によって、同じ非直角の球面三角形について 54 通りの異なる問題が解かれる。この後の章・例題

に続く。 

 

したがって、2 つの角とそれらに対する辺（すなわちその角に対して対辺となる辺）のうち、3 つが

与えられれば、少なくとも第 4 の要素の対数は分かる。しかも、四分円的な特別な図の描写を省略して

もよい。なぜなら、与えられた角とそれに隣接する辺の対数の和から、与えられている第 3 の値の対数

を引けば、求めたい第 4 の要素の対数が得られるからである。そしてその結果から第 4 の要素そのもの

が（ただし種類が不確定でない限り）知られる。 

 

∠ZPS（頂点 P の角）、辺 ZS,辺 ZP の三つのデータが与えられている、すなわち具体例として、辺

ZS=47°（対数=3128580）、辺 ZP=34°（対数=5812606）、さらにその辺 ZP に隣接する

∠ZPS=42°29′59″（対数=3921720）、辺 ZP の対数(5812606)に∠ZPS の対数(3921720)を加えると

9734326 になる。この和から辺 ZS の対数(3128580)を引くと 6605746 が残る。この結果 6605746 が、

求めたい第 4 の要素∠ZSP の対数に相当する。したがって第 4 の要素（∠ZSP）は 31°06′05″であ

る。第 3 章第 2 節の規則によれば、求まる角は直角（90°）より小さいことがわかる。逆にして考え

る。辺 ZP=34°（log=5812606）、辺 ZS=47°（log=3128580）、隣接する角∠ZSP=31°06′05″

（log=6605746）が与えられたとする。この角の対数(6605746)に辺 ZS の対数(3128580)を加えると

9734326 になる。そこから ZP の対数(5812606)を引くと 3921720 が得られる。これが、もう一つの角

ZPS の対数である。その角の大きさは 42°29′59″か、あるいは 137°30′01″のどちらか不定であ

る。ただし仮定条件（角が直角より大きいか小さいか）を追加すれば決定できる。 

 

 

純粋な非四分円の場合について 

第６章 
 

１．純粋な場合とは、同じ種類の三つの部分が与えられているものである。たとえば、三辺が与えられ

ていて角を求める場合や、三角が与えられていて辺を求める場合である。 

 

注意 
 

２．純粋な場合は、本来その単純さから言えば先に置かれるべきだが、その解法の難しさゆえに、ここ

では後の位置に割り当てられている。 
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３．球面三角形において、「両脚の対数の和」を、「底辺の半和・半差の対数」と「両脚の半差の対数」

との和から引き去ると、頂角（脚の交わる角）の半角の対数の２倍が残る。 

 

レギオモンタヌスが「De trianguli」第 5 巻第 2 章で、また他の者たちも教えているように、脚の正弦

から作られた積（直角に関する矩形）は、全弦の平方に対して一定の比を持つ。同様に、基線（底辺）

の正弦平方と脚の差の正弦平方との差は、頂角の正弦平方に対して同じ比を持つ。ところが、先ほどの

「基線と脚の差の正弦平方の差」と「頂角の正弦平方」の比と同じ比で、半基線の和と差、および脚の

半差の正弦から作られる矩形（積）は、頂角の半角の正弦平方に対して成り立つ。なぜなら、この新し

い矩形とその「正弦平方の差」とは、またその平方とその「頂角の正弦平方」とは、ともに比が 

5000000:10000000=1:2 の関係にあるからである。それゆえ、次のことが帰結する。両脚の正弦から作

った矩形（積）が、全弦の平方に対してある比を持つように、半基線の和と差、および両脚の半差の正

弦から作られた矩形は、頂角の半角の正弦の平方に対して同じ比を持つことになる。したがって（第 1

巻第 1 章第 6 定義の系、第 2 章第 4 命題、第 5 章第 3 問題からの結果として）、「両脚（頂角に隣接する

二辺）の対数の和」を、「半基線（底辺の半和・半差）と脚の半差の対数の和」から引き去ると、「頂角

（脚に挟まれた角）の半角の対数の 2 倍」が残る。すでに述べたとおりである。 

 

４．２つの脚の対数の和から、基線の半和および脚の半和の和と差の対数の和を引くと、その差は頂角

の半分の正弦の２倍の対数に対応する。 

 

今回の命題に出てくる「基線の半和と脚の半和の和・差の対数の和」と、前の命題に出てくる「基線

の半和と脚の半差の和・差の対数の和」との関係は、この命題で現れる「頂角半分のアンチログの 2

倍」と、前の命題で現れた「同じ頂角半分のログの 2 倍」との関係とちょうど同じである。もっともそ

の対応関係の厳密な証明は、別の場所で示す。 

 

注意 
 

５．球面三角においても、真の基線と交互の基線を、平面三角の場合と同じ意味で用いる。すなわち、

一方を「場合の和」に、もう一方を「場合の差」に対応させるのである。 

 

６．第三に、真の半基線の差分対数を、脚の半和と半差の差分対数の和から引けば、交互基線の差分対

数が得られる。 

 

この規則の基本的な理由はこうである。真半基線の正接と脚の半和の正接との比は、脚の半差の正接

と交互半基線の正接との比に等しい。というのも、正接の対数は、その弧に対応する差分量だからであ

る（第 1 巻第 3 章 22 節・25 節参照）。したがって、この正接の比例関係から、対数、すなわち差分に

関する等式が導かれる（第 1 巻第 2 章第 4 命題による）。しかし、この正接の基本的比例式はこれまで

知られていなかったので、読者はおそらく私にその証明を求めるであろう。そこで、この要約書の性格

が許す範囲で、ここにその証明を簡潔に述べることにする。 
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球 AFPG が平面 HIKQ に接していて、両者は共通の点 A で互いに接する。そこから球の中心 O を通

る直線 AOP、球の上半球を P とする。こうして AOP は平面 HIKQ に垂直となる。次に、点 A を頂点

とする角において、球面上に三角形 Aλγ

（γ が鋭角の場合）あるいは AλB（β が

鈍角の場合）を描く。さらに大円の半円弧

AλP および AγP（または AβP）を引く。

極 λ を中心とし、弧 λγ（またはそれと等

しい λβ）を半径として、円 εΛβλ を引

く。その円は λP を Λ の点で、λA を Λ の

点で、また弧 Aγλ を β および λ の点で

切る。点 λ から弧 Aβγ に垂線弧 λμ を

下ろす。すると、この図において Aλ が大

きい脚、λγ あるいは λβ が小さい脚、

Aγ と Aβ が基線（その一方が真の基線、

もう一方が交互の基線）、Aδ が脚の差、

Aε が脚の和となる。これは、構成により

λε および λδ が小さい脚 λγ または

λβ に等しいからである。以上の準備を終

えて、点 P を人の目あるいは光源と見な

す。そこから下の平面 HIKQ に向かって光

線を下ろすと、光線 Pγ は平面を点 c で切

り、光線 Pβ は点 b で切る。そして、点 γ,β,A が光源 P と同一平面、あるいは同一円上にあるので、

その影 c,b,A も同じ直線上に並ぶ同じ点 P から同じ平面へ光線を下ろす。Pε が平面を e で切る。Pδ

が平面を d で切る。ε,δ,A は光源 P と同じ平面・円上にあるので、影 e,d,A は一直線にある。さら

に、POA はその平面に垂直（直交）しているので、三角形 PAd,PAe,PAb,PAc は点 A で直角三角形に

なる。そして、Ad つまり∠Apδ の正接は∠AOδ の半分になる（ユークリッド原論 III.20：「中心にお

ける角は円周における角の 2 倍」）。したがって、Ad は「弧 Aδ の半分」の正接になる。これを「両脚

の差の半分」と呼ぶ。影の長さ Ae は∠APε の正接である。この角は円周上の角なので、中心にある対

応する∠AOε の半分にあたる。したがって Ae は、弧 Aε の半分、すなわち「二つの脚の和の半分」

にあたる角の正接である。同じように、底辺についても説明できる。影の長さ Ab は∠APβ の正接であ

るが、これも中心角の半分なので「底辺の半分の一方」にあたる角の正接となる。また Ac は∠APγ の

正接で、これも中心角の半分だから「底辺のもう一方の半分」にあたる角の正接となる。Ab は真の半

基線の正接、Ac はもう一方の半基線の正接、Ad は両脚の半差の正接、Ae は両脚の半和の正接になる。

ここから次の比例関係を主張する：「真の半基線の正接：脚の半和の正接＝脚の半差の正接：交代の半

基線の正接」。これを次のように証明する。もし点 b,c,d,e が同じ円の上にあるならば、ユークリッド原

論第 3 巻命題 36 と第 6 巻命題 16 によって、Ab:Ae=Ad:Ac の比例関係が成り立つ。実際に b,c,d,e の点

は同一円周上にある。なぜなら、球の表面にある円は必ず、光源から投影した影の像として、平面に完

全な円として現れるからである。つまり、球面上にある円を光で投影すると、その影は平面上に完全な

円になる。ただしその平面は、光から球の中心を通って引いた直線に直交する位置に置かれる必要があ
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る。これは光学の理論や、天文観測器の製作からも明らかな事実である。さて、この εβγ の円は、

球の表面に描かれている。そして光源 P は、その円周の外にある。その光源から球の中心を通って引い

た直線 POA は、投影を受ける平面に垂直である。したがって必然的に、d,b,c,e の点を通る影は円形で

ある。したがって、Ab と Ae の関係は Ad と Ac の関係と同じであり、その逆も成り立つ。すなわち、

「真の半基線の正接：脚の半和の正接＝脚の半差の正接：交代の半基線の正接」が成り立つ。したがっ

て、真の半基線に対応する差は、脚の半和と半差に対応する差の和から引き算したものに等しくなる。

それが交代の半基線に対応する差に等しい。これこそ、われわれが証明しようとしたことである。 

 

７．球面三角形では三つの辺が与えられたとき、各角を三つの方法で求めることができる。 

 

８．第一の方法はこうである。任意の一辺（特に直角に近い辺）を底辺と見なす。次に、両脚の半差を

とり、それを半基線に加えたり、または半基線から引いたりする。その結果得られる和と差の対数を

加え、さらに両脚の対数の和をそこから引く。残った対数を二等分して二倍角に対応させれば、頂角

が得られる。同じ手順で他の角も求められる。 

 

繰り返し出てきた三角形 PZS を例にとる。辺 PZ=34°、ZS=47°、SP=69°が与えられている。 

これらの辺から三つの角を求めたい。まず求めるのは、直角に最も近い角である PZS 角。SP=69°を基

底辺として採用する。次に両隣の辺（PZ と ZS）の半差をとると、

6°30′になる。さらに、その半基底（34°30′）に 6°30′を加えると

41°、引くと 28°。41°の正弦の対数=4215044 と、28°の正弦の対数

=7561472 を加えると、11776516 になる。同様に、両脚 PZ=34°と

ZS=47°の正弦の対数 5812606 と 3128580 を加えると、8941186 にな

る。これ（8941186）を前の和（11776516）から引くと、2835330 とな

る。この数（2835330）を半分にした 1417665 はある正弦の対数であり、

その対応する弧は 60°12′24″である。これを 2 倍すると 120°24′49″となり、これが求める頂角

PZS である。同じ方法で、他の角も求めることができる。しかし第 9 章第 5 節の方法を使ったほうが容

易である。なぜなら第 2 章第 3 節にあるとおり、それらは特定の種別だからである。 

 

９．第二の方法は、任意の辺（特に直角に近い辺）を基底辺に定めることから始める。その基底辺の半

分を、両隣の辺の半和に加え、また引く。得られた二つの角度（加えたもの、引いたもの）の正弦の

対数をとり、それらを加える。次に、両隣の辺の正弦の対数の和をそこから引く。残った数を半分に

すると、ある正弦の対数になる。その対応する弧を 2 倍する。そうして、三角形の頂角が得られる。

同じ方法で他の角も求められる。 

 

前に与えられたのと同じ三角形 PZS について、基底辺の半分 34°30′、両脚 PZ・ZS の和の半分

40°30′。この半和に半基底を加えると 75°、半和から半基底を引くと 6°。しがって二つの補助角が

75°と 6°になる。75°と 6°の正弦の対数は 346683 と 22582951、加えると 22929634 になる。先に

求めた和（22929634）から、正弦の対数和（8941186）を引くと、13988448。2 で割と 6994224 この

数を「正弦の対数」とみなすと、その逆対数がある角度の正弦になる。対応する角度は
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60°12′24″。2 倍すると 120°24′49″。これが求める三角形 PZS の頂角である。他の角も同じ手

順で出せる。しかし実際には第 9 章第 5 節の方法のほうが簡単に求められる。なぜなら、第 2 章第 3 節

で述べたように、それらは「特定の種別に属する角」だからである。 

 

１０．第三の方法は、任意の辺を基底辺として定めるところから始める。両脚の半和の対数差に、両脚

の半差の対数差を加える。その和から、真の半基底の対数差を引く。すると、もう一方の半基底の

対数差が得られる。この二つの半基底の和が大の場合、差が小の場合は、二つの直角三角形を区別

するものとなり、第 4 章第 9 節と第 5 章第 8 節で述べた方法により、それぞれの部分、そしてもと

の与えられた三角形の全ての部分を求めることができる。 

 

前に与えられた三角形 PZS の三辺が既知の場合、基底辺の両端の角∠ZPS と∠ZSP を求める。両脚

PZ と ZS の半和は 40°30′、半差は 6°30′、それぞれの正弦の対数差は 1577296・21721209。加え

ると 23298505 になる。半基底 34°30′の対数差が 3750122、先ほどの

23298505 からこれを引くと 19548383。この数に対応する角度が

8°3′31″で半基底となる。半基底 34°30′ と交代半基底 

8°3′31″を加えると 42°33′31″。これが大の場合に MS 対応す

る。また 34°30′から 8°3′31″を引くと 26°26′29″、これが小の

場合に PM 対応する。この二つの値を用いると、点 M を直角頂点とする

二つの直角三角形 PMZ と SMZ が得られる。この二つの直角三角形を使

うことで、垂線 ZM を得ることもでき、また頂点 Z の角を二分する角∠PZM,∠SZM、さらにはそれら

を合成した角∠PZS 全体を求めることができる。その手順は、この書の第 4 章第 9 節・第 5 章第 8 節

に示した通りである。さて、求めるべき基底角（ZPS と ZSP）に話を戻そう。PM=26°16′29″に対

応する対数差 6985518 を使う。これを、基準辺 PZ の補角の対数差–3937709 に加える。その和が

+3047809。これは角 ZPS の補角の対数である。よって、角 ZPS の補角は 47°30′1″。同様に、

SM=42°33′31″に対応する対数差 853239 を使う。これを、補角 PZ=43°の対数差 698698 に加え

る。その和が+1551937。これが角 ZSP の補角の対数である。よって、角 ZSP の補角は

58°53′55″。ここで注意しておくべきは使うのは、辺 PZ=34°と角 ZPS、あるいは PZ=47°と角

ZSP そのものではなく、それらの補角、すなわち 56°と 47°30′1″、および 43°と 58°53′55″の

ほうである。これらがここでいう円的部分である、と本書第 4 章第 2 節で定義されている。したがって

求められる真の角は、∠ZPS=42°29′59″、∠ZSP=31°6′5″である。本書第 5 章第 8 節からも明

らかである。 

 

同一の三角形について別の計算例 
 

同じ三角形 PZS を、別の形で構成し直して Z を底辺とし、辺は前と同じく与えられているとして、

∠PZS を求める。与えられた二つの脚（辺）は SP=69°,PZ=34°である。その半和は 51°30′、対数

差–2288650。一方、半差は 17°30′、対数差+11542341 である。これらの対数差を加えると

+9253691 となる。そこから底辺 SZ の半分（=23°30′）に対応する対数差 8328403 を引くと、

925288。これは弧 42°21′11″に対応する対数差であり、交互半基線にあたる。したがって、半基線
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42°21′11″に 23°30′を加えると、65°51′11″となり、これは大きい場合の辺 ST である。ま

た、42°21′11″から 23°30′を引くと 18°51′11″が残り、これは小さい場合の辺 TX（または

TZ）である。したがって、この対数差+10745201 に、ZP

の余角の対数差、56°に対応する対数差-3937709 を加える

と、+6807492 となる。これは角 PZT の余角の対数にあた

る。この対数 6807492 に対応する弧は 59°35′11″であ

る。よって∠PZT=59°35′11″。ところで、求める∠PZS 

は、半円（180°）からこの∠PZT を引いた残りである（こ

れは交互基線が真の基線より大きい場合には常に起こるこ

と）。したがって、∠PZS=180°－59°35′11″=120°24′49″である。逆にもし真の基線が交互基

線より大きいならば、∠PZT=∠PZS。 

 

注意 
 

これで、与えられた三辺から角を求める真の方法を三通り得たことになる。そしてそれぞれの方法に

よって、この三角形、さらにはあらゆる三角形に関する三種の異なる問題が解かれる。たとえば、与え

られたものが極の高度、太陽の高度、太陽の赤緯であれば、疑問に応じて次の三つの問いに答えること

ができる。すなわち、第一に太陽の方位、第二に太陽の位置角、第三に時刻である。 

 

ここまでは辺から角を求める方法を扱ってきた。残るは角から辺を求める方法である。 

 

１１．どんな球面三角においても、辺を角に置き換えることもでき、角を辺に置き換えることもでき

る。ただしその際には、まず一つの角と、それに対する辺を対応させ、他の辺や角は半円に対して

互いに補い合うように考慮する必要がある。 

 

たとえば例として 

 

三角形 QRT を考えよう。その角は Q=47°,R =111°,T=34°である。まず任意の角、ここでは

R=111°を取り、その補角をとると 69°になる。すると角 47°,69°,34°は

辺に入れ替えられる。これによって別の三角形 PZS ができる。この三角形

PZS では、辺 PZ=34°,辺 ZS=47°,辺 PS=69°である。同様に逆に、三角形

PZS の角からも、元の三角形 QRT の辺が得られる。向こうでの

∠ZSP=31°06′05″は、こちらでは辺 QR になる。向こうの

∠ZPS=42°29′59″は、こちらでは辺 RT になる。向こうの第 3 角

=120°24′49″。その補角が 59°35′11″であり、これがこちらでは辺

QT になる。この事実の証明は、バルトロメウス・ピティスクス、アドリアン・メティウス、その他の

人々が示している。したがってこの概略では、改めて証明を繰り返す必要はないと私は考える。 
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１２．したがって、球面三角形において 3 つの角が与えられれば、簡単な変換によってその辺が求めら

れる。 

 

前に扱った三角形 QRT の角が Q=47°,R=111°,T=34°で与えられているとする。その辺を求めた

い。任意の角を 1 つ取り、その補角を考える。例として R=111°を取りその補角は 69°となる。した

がって 47°,69°,34°を辺とみなす。先に説明した 3 つの方法のどれを使っても、その三角形（PZS）

の角を求めよ。辺 47°に対する角は 42°25′59″、辺 34°に対する角は 31°6′5″、辺 69°

（111°の代わりに置いた）に対する角は 120°24′49″。したがって、球面三角形 QRT において、

角が Q=47°を対する辺 RT に対応させるときは、42°29′59″を置く。角が T=34°を対する辺 QR

には 31°6′5″を置く。角が R=111°を対する辺 QT には、59°35′11″を置く。これは角

120°24′49″の補角である。というのも、先に角 111°の代わりに、その補角である 69°を採用して

いたからである。このようにして、角から変換によって辺が得られる。 

 

注意 
 

与えられた角から辺を見つける方法によって、この場合も、他のどんな球面三角形の場合でも、三種

類の異なる問題が解ける。たとえば三角形 PZS の場合、時刻・太陽の方位・太陽の位置角が与えられる

と、先に述べた方法（角→辺の変換）により、地平上の極の高度・太陽の高度・太陽の赤緯が求められ

る。したがって前章第 5 章の第 8 節と、本章の第 7 節および第 12 節から、60 通りの異なる問題の解法

を持つことになる。それらはあらゆる三角形に当てはまる。よってあなたは、球面三角形だけでなく平

面三角形についても、完全かつ完結した理論を手にしたことになる。 

 

結論 
 

以上で十分に示したように、対数とは何であるか、どのようなものか、また何に役立つのかが明らか

になった。すなわち対数の助けを借りれば、掛け算・割り算・平方根抽出といった煩雑さなしに、あら

ゆる幾何学的問題の算術的解法をきわめて容易に得ることができるのである。このことを私は厳密な証

明によっても示し、また平面および球面三角法の例を通じても明らかにしてきた。こうして、予告して

いた驚くべき対数表と、その広大な用途をあなたがたは手にした。もしこれが諸君、学識ある人々に喜

ばしいものであったとお返事から知ることができれば、私は一層励まされ、この対数表を作成する方法

までも世に公表するであろう。しばしの間はこの小著を楽しんでいただきたい。そして、至高の造物主

にしてすべての善き業の助け主である神に、最高の賛美と栄光を帰したまえ。 

 

原書の正誤表 
 

原書 誤 正 

42 頁 10 行目 11 11″(11 秒) 

43 頁 22 行目 6″(6 秒) 6′(6 分) 
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43 頁 33 行目 & S. Et S. I. 

48 頁 16 行目 5000000 cupla 

（五百万倍） 
5000000

cupla 

（五百万の指数乗） 

49 頁 27 行目 λP in λP in ε 

50 頁 2 行目 criculo circulo（円） 

55 頁 12 行目 Sect. Sec. （正割） 

56 頁 3 行目 angulis fient angulis, fient 

56 頁 28 行目 mi-circulum semi-circulum（半円） 

その他の小さな誤りは、注意深い読者なら簡単に直せるであろう。 

 

 

以下に対数表を示す 
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言葉の対応表 

 現代表記（意味） 

カス 線分の長さ 

割戦 Sec 

正弦 Sin 

正接 Tan 

全正弦 Sin90° 

対数 Log 

補角 90°－角度 

斜辺 直角に対する辺 

脚 直角をはさむ二辺 

 

対数表の構造（角度 20°15分での例） 

角度 20° 

分 正弦 対数 差 対数 正弦 分 

15 3461171 10609779 9971764 638015 9381913 45 

①  ②  ③  ④  ⑤  ⑥  ⑦  

                            角度 69° 

 

① 20°15 分=20.25° 

② 10000000 sin 20.25° 3461171 =  

 

③ 
106097793461171 10000000 0.9999999=   

0.9999999 0.9999999

3461171
10609779 log log sin 20.25°

10000000
= =  

この対数を上記式で直接求める方法は、この時代では無理なはずである。 

０°または９０°から始めて、正弦の差を等比数列を、ある一定の比率で等差数列に変換したのが

対数のはずである。そして、０°１分の対数が 81425681 を初期値にした場合、最終値が１になる

ので、あまりにも偶然すぎる。このやり方は不自然である。８９°５９分の対数１から始めるのが

妥当と考える。 

④ 計算③－⑤=10609779－638015=9971764 

⑤ ②から③を求める方法で、⑥から求める。 

⑥ ⑦の正接 10000000×Sin69.75°=9381913 

⑦ 現代表記：10000000×Cos20.25°=9381913 

⑧ 補角=90°－ 20°15 分 
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追記 

正接・対数表を原書に従って作成していたら、ネーピアの作成ミスがいくつかあった。ある程度バラン

スチェックできるので、そのチェックに基づいて訂正した。 

 

考察 

②・⑥正弦の作成方法 

10000000 の基準線を用意する。点 A で角度 20.25°になるように線 AC’を引く。点 B より AC’へ垂線

を引き、交点を C とする。BC の長さが正弦になる。そして AC の長さが補角の正弦になる。 

③・⑤対数の作成方法 

数列（比率）を使って求めるだろう、ということは想像できるが、具体的な方法はわからない。 
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